vision and color perception
play

Vision and Color Perception Lecture 5 January 28, 2020 Slides - PowerPoint PPT Presentation

CS530 - Spring 2020 Introduction to Scientific Visualization Vision and Color Perception Lecture 5 January 28, 2020 Slides acknowledgment: P. Rheingans (UMBC) and A. Lex (Utah) Outline Preamble: human vision Physiological basis of


  1. CS530 - Spring 2020 Introduction to Scientific Visualization Vision and Color Perception Lecture 5 January 28, 2020 Slides acknowledgment: P. Rheingans (UMBC) and A. Lex (Utah)

  2. Outline • Preamble: human vision • Physiological basis of color perception • Color vision models • Color spaces 2 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  3. Functions of Human Vision • Shape/size • Depth • Motion • Recognition 3 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  4. Properties of Vision • Accurate relative to other senses • Location, size, and identification at a distance • But… 4 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  5. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 5

  6. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 6

  7. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 7

  8. Perceived Sizes Are Relative CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 8

  9. Perceived Sizes Are Relative CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 9

  10. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 10

  11. Ames Room 11 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  12. Ponzo Illusion CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 12

  13. Ponzo Illusion CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 13

  14. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 14

  15. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 15

  16. �������� Properties of Vision • Limitations • V eridical perception is limited • Absolute judgments are often poor • Lack of quantification CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 16

  17. Properties of Vision • Good at • Relative judgments • Time and space • Identification 17 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  18. Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  19. ������������������ � Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  20. Light • Visible range: 390-700nm • 0.00003 -- Moonless overcast night sky • Luminance has a large dynamic range • 30 -- Sky on overcast day • 3000 -- Sky on clear day • Colors result from spectral curves • 16,000 -- Snowy ground in full sunlight • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  21. Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  22. Spectral Curve (of incoming radiation) Magnitude/Intensity Visible Wavelength (1/frequency) CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 19

  23. Physiology: Eye CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 20

  24. Perspective Projection and Image Formation Image plane/retina Lens Scene CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 21

  25. ����� ���� Physiology: Photoreceptors • Discrete sensors that measure energy • Adaptation • Rods ~ 120 million • Active at low light levels ( scotopic vision) • Only one wavelength-sensitivity function • Cones ~ 6-7 million • Active at normal light levels ( photoptic ) • Three types: sensitivity functions with different peaks 22 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  26. �������������� Retina CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 23

  27. Cone Sensitivity HyperPhysics, Georgia State University 24 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  28. Rod Sensitivity Function CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 25

  29. ������������������������ ������� CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 26

  30. ����������������������� ������������� Retinotopic Mapping CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 27

  31. Human Gaze •Vision made up of fixations and saccades • Fixation: 200-600 ms • Motion: 20-100 ms 28 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  32. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 29

  33. Models of Color Vision •Tricolor theory •Opponent process theory 30 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  34. Trichromatic Theory • Three types of cones – each with a characteristic wavelength • Mixture of 3 responses defines color • Explains some psychophysical data • 3D color space (i.e. 3 colors match any perceived) 31 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  35. Trichromatic Theory • Metamers: match of an apparent color with a different spectral distribution (3D basis) • Color blindness (different types) 32 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  36. Trichromatic Theory CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 33

  37. Trichromatic Theory Shortcomings • Color blindness • R-G, B-Y, All • Yellow seems primary • Color constancy 34 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  38. Note: Additive vs. Subtractive Colors Additive Subtractive CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 35

  39. Note: Additive vs. Subtractive Colors Additive coloring: Colors are produced by combining (adding) electromagnetic radiations of different wavelength / frequency. Example: computer screen CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 36

  40. Note: Additive vs. Subtractive Colors Subtractive coloring: Colors are obtained by combining things that absorb different portions of the visual spectrum when they reflect/scatter the incoming light. Subtractive coloring defines the “color” of objects . Additive Example: pigments of paint CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 37

  41. Color Blindness No L cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 38

  42. Color Blindness No M cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 39

  43. Color Blindness No L cones No M cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 40

  44. Color Blindness No L cones No M cones Red/green deficiencies CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 40

  45. Color Blindness No S cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 41

Recommend


More recommend