viruses
play

Viruses X-ray, EM structure function structure function - PowerPoint PPT Presentation

Viruses X-ray, EM structure function structure function properties thermal stability mechanics electrostatics vibrations Etc PHYSICAL VIROLOGY Single molecule techniques provide complementary information to structural


  1. Viruses X-ray, EM structure function

  2. structure function properties • thermal stability • mechanics • electrostatics • vibrations • Etc PHYSICAL VIROLOGY

  3. Single molecule techniques provide complementary information to structural biology Atomic Force Microscopy Binnig, Quate, Gerber, PRL 1986 Physiol siologi ogical al condi diti tions ons Functional protein shells Mechan anics Manip Ma ipula lati tion on Re Real al time e ex experi erimen ments ts

  4. Atomic Force microscopy in liquids

  5. Cantilever/virus size

  6. Atomic Force Microscopy scanning probe

  7. AFM imaging of viruses De Pablo o et al, APL 1998 Ortega-Est Esteb eban n et al. Ultram amicr crosc oscopy py 2012 2012

  8. High resolution AFM of adenovirus hexons

  9. Single indentation assay

  10. Single indentation assay breaking force 1 2 3 spring constant 3 k v 2 1 after before

  11. Self-recovery of vault particles 3 2 1 Llauró et al Biophysical Journal 2014

  12. Human adenovirus Penton loss and disassembly Capsid id 240 hexons, 12 pentons, proteins IIIa, VI, VIII, IX Fiber flexible, specific host recognition Core re 35kbp dsDNA, proteins TP, VII, μ 50% DNA + 50% histone-like proteins Greber et al. Cell 1993

  13. Maturation changes the core protease cleaved protein protease protein Immature Mature non infectious infectious Pérez-Berná et al. JMB 2009

  14. DNA • Does DNA modulate the mechanical properties of adenovirus particles? • Interplay between physical properties and virus function? disassembly DNA diffusion

  15. Adsorption geometries

  16. Mechanical evolution

  17. Interpretation k virus =k shell +k DNA k DNA (mature) > k DNA (immature)

  18. Crack-open the shell

  19. Crack-opening the shell mature inmature

  20. Mechanics of cores 1.4 mature 60 immature 1.2 50 Young's Modulus (MPa) 1.0 Deflection (nm) 40 0.8 30 0.6 20 Dimitriadis 0.4 Biophys J. 2002 10 0.2 0 0.0 0 20 40 60 80 mature immature Indentation (nm) E < E Pressurization? mature immature k k > immature mature

  21. DNA condensate Adding counterions to DNA induce toroidal condensates (3+) Gronbech-Jensen et al. PRL 1997

  22. Core mechanics < E E E < mature mature immature spermidine

  23. Pressure estimation Unbranched polymer Irrespective of the physical origin Vella et al. The Indentation of Pressurized Elastic Shells: From Polymeric Capsules to Yeast Cells. 2011, Journal of The Royal Society Interface . 1 τ 2 − 1 k 1 = π 2 2 k 0 . 1 arctanh 1 − τ − 2 2 p=3 ± 1 MPa

  24. DNA-DNA repulsion pressurizes the shell after maturation

  25. Biological implications Pentons are the weakest capsomers W. Klug et al, PRL 10/2012; 109(16):168104. Ortega-Esteban Sci. Rep. 2013, 3, 14434 Ortega-Esteban et al ACS Nano 2015 We propose that pressure helps to pop-off pentons at the early endosoome

  26. Biological implications diffusion of DNA?

  27. Fatigue

  28. Multiple indentation assay below the breaking force (fatigue) Force  100 pN 30 times less than breaking force! Ortega-Esteban et al. Ultramicroscopy 2012

  29. Uncoating dynamics Mat ature Immat ature

  30. Core exposure # image # image 0 10 20 30 40 50 60 0 10 20 30 40 50 60 90 90 80 75 average height (nm) 70 60 60 height (nm) 50 70 nm 70 45 40 nm 30 30 20 15 10 0 0 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 time (m) time (m) Immat ature Mat ature Can an we we vi visual alize genome uncoat ating?

  31. Core exposure 86.6 nm nm m 0.0 nm Mat ature Immat ature nm Can we we vi visual alize th the genome uncoat ating?

  32. Fluorescence YOYO-1 absorption YOYO-1 emission 1.0 0.8 Intensity (a.u.) 0.6 0.4 0.2 0.0 350 400 450 500 550 600 650 700 750 Wavelength (nm) YOYO-1

  33. AFM – fluorescence combination

  34. AFM – fluorescence combination

  35. AFM induced unpacking of adenovirus

  36. AFM induced unpacking of adenovirus

  37. AFM forced unpacking of Adenovirus 15 600 photons above background 12 400 9 Force (nN) 6 200 3 0 0 0 1 2 3 4 time (s) simultaneous single particle fluorescence with AFM observe DNA release with YOYO-1

  38. Quantifying DNA release mature average count wt 60 immature average count ts1 50 Emission (counts) 40 30 20 10 0 0 20 40 60 80 time (s)

  39. Quantifying DNA release Ortega ga-Es Esteba teban, , de Pablo, , Schaa aap et al. ACS Nano 2015 45

  40. Controlled capsid disassembly

  41. Quantifying DNA release Ma Matu ture Immat ature - Mature core spreads more the genome - Immature emits less photons 47 Ortega ga-Es Esteba teban, , de Pablo, , Schaa aap et al. ACS Nano 2015

  42. Topics today 1. Introduction 2. Mechanics of human adenovirus: capsid and core 3. Genome release: watching a virus undress 4. Mechanical role of cementing proteins: tuning particles stability with symmetrical morphogenesis 5. Summing up

  43. Cementing/decorative proteins An alternative strategy to strengthen virus capsids during maturation 49

  44. Lambda phage  60 nm in diamter  420 gpE + 415 gpD. 72 capsomers  DNA ~ 48.5 kbp ~ 14.5 µm . C.G Lander

  45. Single indentation assay undecorated 32nm 30nm decorated Nature Communications 5, 4520 (2014)

  46. Mechanical fatigue undecorated 5 2,5x10 # load cycles 5 2,0x10 5 1,5x10 5 1,0x10 decorated 4 5,0x10 52 Nature Communications 5, 4520 (2014)

  47. Decorated particles are mechanically more robust that undecorated Can we use cementing proteins to recover weaken protein shells? 53

  48. Tuning viral capsid nanoparticle stability with simmetrycal morphogenesis 20 m 65 0 C P22 phage (EX)panded P22 phage “ Wiffle Ball” WB EX-Dec Lian Tang et al Structure 2006 WB-Dec Parent et. Al 54 Structure 2010, Biomaterials 2012 P22 binds phage L Dec proteins at quasi-three fold locations

  49. P22 particles 20 m 65 0 C WB EX EX-Dec WB-Dec 55

  50. Collapse of p22 particles after adsorption on the surface 20 nm 56

  51. Collapse of p22 particles after adsorption on the surface 20 nm 57

  52. Collapse of p22 particles after adsorption on the surface 57 0,92 56 0,90 55 0,88 54 20 nm h (nm) 53 0,86 h/d 52 0,84 51 0,82 50 49 0,80 EX EX+ Dec WB WB+ Dec 58

  53. Which structure is more stable? Llauró et al. ACS Nano 2016 59

  54. Which structure is more stable? Llauró et al. ACS Nano 2016 60

  55. WB EX+Dec EX WB-Dec 0,24 EX+Dec EX 0,22 WB+Dec WB 0,20 K (N/m) 0,18 0,16 0,14 0,12 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 Breaking Force (nN)

  56. How much work is used to crack the particles? Llauró et al. ACS Nano 2016 62

  57. Cementing proteins improve capsid performance

  58. Summary Core mechanics indicates adenovirus pressurization that helps for disassembly and genome delivery Immatur ure Matur ure Genome condensation influences on diffusion Cementing proteins recovers weak particles

  59. Natalia González Francisco J. Moreno-Madrid Manuel Jiménez Former members Marina López Mercedes Hernando Carolina Carrasco Alvaro Ortega Aida Llauró

  60. Collaborators Funding Arvind Raman Carlos E. Catalano Carmen San Martín Daniel Luque Dave Evans David Reguera Iwan Schaap José Ruiz Castón Mark van Raaij Mauricio García Mateu Nuria Verdaguer Rudi Podgornik Salvatore Cannistraro Trevor Douglas Urs Greber Thank you!

Recommend


More recommend