Viruses X-ray, EM structure function
structure function properties • thermal stability • mechanics • electrostatics • vibrations • Etc PHYSICAL VIROLOGY
Single molecule techniques provide complementary information to structural biology Atomic Force Microscopy Binnig, Quate, Gerber, PRL 1986 Physiol siologi ogical al condi diti tions ons Functional protein shells Mechan anics Manip Ma ipula lati tion on Re Real al time e ex experi erimen ments ts
Atomic Force microscopy in liquids
Cantilever/virus size
Atomic Force Microscopy scanning probe
AFM imaging of viruses De Pablo o et al, APL 1998 Ortega-Est Esteb eban n et al. Ultram amicr crosc oscopy py 2012 2012
High resolution AFM of adenovirus hexons
Single indentation assay
Single indentation assay breaking force 1 2 3 spring constant 3 k v 2 1 after before
Self-recovery of vault particles 3 2 1 Llauró et al Biophysical Journal 2014
Human adenovirus Penton loss and disassembly Capsid id 240 hexons, 12 pentons, proteins IIIa, VI, VIII, IX Fiber flexible, specific host recognition Core re 35kbp dsDNA, proteins TP, VII, μ 50% DNA + 50% histone-like proteins Greber et al. Cell 1993
Maturation changes the core protease cleaved protein protease protein Immature Mature non infectious infectious Pérez-Berná et al. JMB 2009
DNA • Does DNA modulate the mechanical properties of adenovirus particles? • Interplay between physical properties and virus function? disassembly DNA diffusion
Adsorption geometries
Mechanical evolution
Interpretation k virus =k shell +k DNA k DNA (mature) > k DNA (immature)
Crack-open the shell
Crack-opening the shell mature inmature
Mechanics of cores 1.4 mature 60 immature 1.2 50 Young's Modulus (MPa) 1.0 Deflection (nm) 40 0.8 30 0.6 20 Dimitriadis 0.4 Biophys J. 2002 10 0.2 0 0.0 0 20 40 60 80 mature immature Indentation (nm) E < E Pressurization? mature immature k k > immature mature
DNA condensate Adding counterions to DNA induce toroidal condensates (3+) Gronbech-Jensen et al. PRL 1997
Core mechanics < E E E < mature mature immature spermidine
Pressure estimation Unbranched polymer Irrespective of the physical origin Vella et al. The Indentation of Pressurized Elastic Shells: From Polymeric Capsules to Yeast Cells. 2011, Journal of The Royal Society Interface . 1 τ 2 − 1 k 1 = π 2 2 k 0 . 1 arctanh 1 − τ − 2 2 p=3 ± 1 MPa
DNA-DNA repulsion pressurizes the shell after maturation
Biological implications Pentons are the weakest capsomers W. Klug et al, PRL 10/2012; 109(16):168104. Ortega-Esteban Sci. Rep. 2013, 3, 14434 Ortega-Esteban et al ACS Nano 2015 We propose that pressure helps to pop-off pentons at the early endosoome
Biological implications diffusion of DNA?
Fatigue
Multiple indentation assay below the breaking force (fatigue) Force 100 pN 30 times less than breaking force! Ortega-Esteban et al. Ultramicroscopy 2012
Uncoating dynamics Mat ature Immat ature
Core exposure # image # image 0 10 20 30 40 50 60 0 10 20 30 40 50 60 90 90 80 75 average height (nm) 70 60 60 height (nm) 50 70 nm 70 45 40 nm 30 30 20 15 10 0 0 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 time (m) time (m) Immat ature Mat ature Can an we we vi visual alize genome uncoat ating?
Core exposure 86.6 nm nm m 0.0 nm Mat ature Immat ature nm Can we we vi visual alize th the genome uncoat ating?
Fluorescence YOYO-1 absorption YOYO-1 emission 1.0 0.8 Intensity (a.u.) 0.6 0.4 0.2 0.0 350 400 450 500 550 600 650 700 750 Wavelength (nm) YOYO-1
AFM – fluorescence combination
AFM – fluorescence combination
AFM induced unpacking of adenovirus
AFM induced unpacking of adenovirus
AFM forced unpacking of Adenovirus 15 600 photons above background 12 400 9 Force (nN) 6 200 3 0 0 0 1 2 3 4 time (s) simultaneous single particle fluorescence with AFM observe DNA release with YOYO-1
Quantifying DNA release mature average count wt 60 immature average count ts1 50 Emission (counts) 40 30 20 10 0 0 20 40 60 80 time (s)
Quantifying DNA release Ortega ga-Es Esteba teban, , de Pablo, , Schaa aap et al. ACS Nano 2015 45
Controlled capsid disassembly
Quantifying DNA release Ma Matu ture Immat ature - Mature core spreads more the genome - Immature emits less photons 47 Ortega ga-Es Esteba teban, , de Pablo, , Schaa aap et al. ACS Nano 2015
Topics today 1. Introduction 2. Mechanics of human adenovirus: capsid and core 3. Genome release: watching a virus undress 4. Mechanical role of cementing proteins: tuning particles stability with symmetrical morphogenesis 5. Summing up
Cementing/decorative proteins An alternative strategy to strengthen virus capsids during maturation 49
Lambda phage 60 nm in diamter 420 gpE + 415 gpD. 72 capsomers DNA ~ 48.5 kbp ~ 14.5 µm . C.G Lander
Single indentation assay undecorated 32nm 30nm decorated Nature Communications 5, 4520 (2014)
Mechanical fatigue undecorated 5 2,5x10 # load cycles 5 2,0x10 5 1,5x10 5 1,0x10 decorated 4 5,0x10 52 Nature Communications 5, 4520 (2014)
Decorated particles are mechanically more robust that undecorated Can we use cementing proteins to recover weaken protein shells? 53
Tuning viral capsid nanoparticle stability with simmetrycal morphogenesis 20 m 65 0 C P22 phage (EX)panded P22 phage “ Wiffle Ball” WB EX-Dec Lian Tang et al Structure 2006 WB-Dec Parent et. Al 54 Structure 2010, Biomaterials 2012 P22 binds phage L Dec proteins at quasi-three fold locations
P22 particles 20 m 65 0 C WB EX EX-Dec WB-Dec 55
Collapse of p22 particles after adsorption on the surface 20 nm 56
Collapse of p22 particles after adsorption on the surface 20 nm 57
Collapse of p22 particles after adsorption on the surface 57 0,92 56 0,90 55 0,88 54 20 nm h (nm) 53 0,86 h/d 52 0,84 51 0,82 50 49 0,80 EX EX+ Dec WB WB+ Dec 58
Which structure is more stable? Llauró et al. ACS Nano 2016 59
Which structure is more stable? Llauró et al. ACS Nano 2016 60
WB EX+Dec EX WB-Dec 0,24 EX+Dec EX 0,22 WB+Dec WB 0,20 K (N/m) 0,18 0,16 0,14 0,12 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 Breaking Force (nN)
How much work is used to crack the particles? Llauró et al. ACS Nano 2016 62
Cementing proteins improve capsid performance
Summary Core mechanics indicates adenovirus pressurization that helps for disassembly and genome delivery Immatur ure Matur ure Genome condensation influences on diffusion Cementing proteins recovers weak particles
Natalia González Francisco J. Moreno-Madrid Manuel Jiménez Former members Marina López Mercedes Hernando Carolina Carrasco Alvaro Ortega Aida Llauró
Collaborators Funding Arvind Raman Carlos E. Catalano Carmen San Martín Daniel Luque Dave Evans David Reguera Iwan Schaap José Ruiz Castón Mark van Raaij Mauricio García Mateu Nuria Verdaguer Rudi Podgornik Salvatore Cannistraro Trevor Douglas Urs Greber Thank you!
Recommend
More recommend