virtual network mapping based on subgraph isomorphism
play

Virtual Network Mapping based on Subgraph Isomorphism Detection Jens - PowerPoint PPT Presentation

Virtual Network Mapping based on Subgraph Isomorphism Detection Jens Lischka, Holger Karl Paderborn University 23.09.2009 Jens Lischka 1 VNM Problem VNR 1(t 0 , 10) PN 2 6 7 5 2 5 4 5 G B C 4 15 0 4 5 5 0 5 7


  1. Virtual Network Mapping based on Subgraph Isomorphism Detection Jens Lischka, Holger Karl Paderborn University 23.09.2009 Jens Lischka 1

  2. VNM Problem VNR 1(t 0 , 10) PN 2 6 7 5 2 5 4 5 β β G B β C 4 15 0 4 5 5 0 5 γ 7 3 3 α F 2 7 3 0 4 3 α 3 α A D γ E 3 3 0 0 8 8 5 7 0 0 VNR 2(t 5 ,3) VNR 3(t 6 ,3) β α β α 15 8 3 5 3 2 23.09.2009 Jens Lischka 2

  3. Overview • 2stage VNM algorithm • Subgraph Isomorphism Detection based VNM • Experimental results 23.09.2009 Jens Lischka 3

  4. 2stage Algorithm 1. First stage: find suitable mapping nodes 2. Second stage: find a link mapping (k ‐ shortest paths, multi commodity flow) 3. No paths for virtual links β‐ > γ ! 4. Problem: first stage does not take connectivity of VNs into account VN PN 6 6 7 0 5 4 5 0 β G B C γ 4 15 10 5 0 5 4 5 γ 7 3 0 3 β F 7 3 1 4 3 α 3 A D E α 4 1 4 8 8 5 7 0 23.09.2009 Jens Lischka 4

  5. 2stage vs. vnmFlib 2stage vnmFlib Map single node n Map nodes Map links No No Map ninks connected to n complete valid valid Yes No Yes Yes Track back to last valid mapping Done! Done! 23.09.2009 Jens Lischka 5

  6. Example: vnmFlib 1. Compute set of candidates C. 2. Compute a set of mapping candidates M. 3. Add α to the subgraph and map it onto A. 4. Map all links connecting α with the subgraph onto the PN 5. Check validity. Subgraph Mapping C={ α , γ , β } M={A} 6 6 7 5 4 5 β 4 G B C 15 5 5 5 4 3 γ 3 7 F 7 3 4 3 α α 3 A D E α 4 4 8 0 5 7 8 8 23.09.2009 Jens Lischka 6

  7. Example: vnmFlib 1. Compute C and M. 2. Add γ to the subgraph and map it onto B. 3. Map all links connecting γ with the subgraph onto the PN. 4. Check validity. Subgraph Mapping C={ γ , β } M={B,E,F} 6 6 7 0 5 4 5 β 4 G γ B C 15 2 5 4 5 5 3 γ γ 7 7 F 7 3 3 4 3 3 α α 3 A D E α 0 4 4 5 7 8 23.09.2009 Jens Lischka 7

  8. Example: vnmFlib 1. Compute C and M. 2. Add β to the subgraph and map it onto G. 3. Map all links connecting β with the subgraph onto the PN. 4. Check validity. Subgraph Mapping C={ β } M={G,E,F} 6 6 6 0 0 5 0 4 5 β β 4 4 G β γ B C 15 2 4 5 3 5 5 c γ 7 7 F 7 3 ‐ 2 3 4 3 3 a α 3 A D E α 0 4 4 5 7 8 23.09.2009 Jens Lischka 8

  9. Example: vnmFlib 1. Choose next node E of M. 2. Map β onto E. 3. Map all links connecting β with the subgraph onto the PN. 4. Check validity. Subgraph Mapping C={b} M={G,E,F} 6 6 6 0 5 4 5 β β 4 4 G γ B C 15 5 2 4 0 3 5 5 c γ 7 7 3 F 7 3 4 3 3 a α 3 A D E α β 0 4 4 ‐ 1 ‐ 1 5 7 8 1 23.09.2009 Jens Lischka 9

  10. Example: vnmFlib 1. Track back to the last valid mapping solution. 2. Choose next node E. 3. Map γ onto E. 4. Map all links connecting γ with the subgraph onto the PN. 5. Check validity. Subgraph Mapping C={ γ , β } M={B,E} 6 6 7 5 4 5 β 4 G B C 15 5 5 4 3 c γ 7 7 3 F 7 5 3 4 3 3 a α 3 A D E γ α 0 4 4 1 1 5 7 8 0 23.09.2009 Jens Lischka 10

  11. Example: vnmFlib 1. Compute C and M. 2. Add β to the subgraph and map it onto B. 3. Map all links connecting β with the subgraph onto the PN. 4. Check validity. Subgraph Mapping C={ β } M={B,F,G} 6 6 6 7 5 1 4 5 β β 4 4 G B β C 15 5 4 5 0 3 5 5 c γ 7 7 F 3 7 3 4 0 3 3 a α 3 A D γ E α 0 1 1 5 0 8 23.09.2009 Jens Lischka 11

  12. Path Splitting • Split up path into multiple paths 6 7 5 5 4 5 8 G B C 15 VNR 5 5 5 4 3 3 F α 8 3 α β 4 3 8 8 8 3 A D E β 4 4 3 3 8 5 7 23.09.2009 Jens Lischka 12

  13. Experimental Results • Network setup similar to previous work[1] with GT ‐ ITM tool: – PN: 100 nodes and 500 links CPU at the nodes, Bandwidth at the links follow uniform distribution from 0 ‐ 100 units – VNs: 20 ‐ 40 nodes, each pair of nodes connected with probability 0.5 CPU and Bandwidth follow a uniform distribution from 0 to beta units. • Compared our algorithm with the two stage VN Mapper of [1]. [1]Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration. SIGCOMM Comput. Commun. Rev., 38(2):17 ‐ 29, 2008. Source code available: http://www.princeton.edu/~minlanyu/embed.tar.gz 23.09.2009 Jens Lischka 13

  14. Experimental results 23.09.2009 Jens Lischka 14

  15. Experimental Results 23.09.2009 Jens Lischka 15

  16. Summary • Introduced new VNM method based on SID • SID based VNM performs better than the 2stage approach – Especially for higher beta values and bigger networks • Currently we are implementing the mapper on the PlanetLabTestbed infrastructure as part of the OneLab2 project. 23.09.2009 Jens Lischka 16

  17. Thank You Questions? 23.09.2009 Jens Lischka 17

  18. VNM Algorithms • 2stage: – Rethinking Virtual Network Embedding: Support for Path Splitting and Migration. SIGCOMM, 2008. – Algorithms for Assigning Substrate Network Resources to Virtual Network Components, INFOCOMM, 2006. – A Multi ‐ Commodity Flow Based Approach to Virtual Network Resource Allocation. GLOBECOMM, 2003. • Simulated Annealing: – A Solver for the Network Testbed Mapping Problem. Computer Communications Review 33(2), 2003. • Mixed Integer Quadratic Program – Efficient Mapping of Virtual Networks onto a shared Substrate. Technical Report, Washington University. 23.09.2009 Jens Lischka 18

  19. VNM Algorithms • Virtual Network Embedding with Coordinated Node and Link Mapping. – In Proceedings of the 28 th Conference on Computer Communications (IEEE INFOCOMM), April 2009. 23.09.2009 Jens Lischka 19

  20. SID based VNM • Idea: Map Nodes and Links alternately based on vFlibSubgraph Isomorphism Detection algorithm. • Build a subgraph S of VN by successively adding nodes of VN to S and map S onto PN until S fully covers VN. • Difference to vFlib: – Allow mapping of virtual links onto paths – Check capacity constraints 23.09.2009 Jens Lischka 20

Recommend


More recommend