verified computations of laminar premixed flames
play

Verified Computations of Laminar Premixed Flames Ashraf N. - PowerPoint PPT Presentation

Verified Computations of Laminar Premixed Flames Ashraf N. Al-Khateeb Joseph M. Powers Samuel Paolucci Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana 45 th AIAA Aerospace Science Meeting and


  1. Verified Computations of Laminar Premixed Flames Ashraf N. Al-Khateeb Joseph M. Powers Samuel Paolucci Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana 45 th AIAA Aerospace Science Meeting and Exhibit Reno, Nevada 8 January 2007

  2. Objective To obtain an accurate a priori estimate for the finest length scale in a continuum model of reactive flow with detailed kinetics and multi-component transport of: • steady, • one-dimensional, • ideal gas mixture, • premixed laminar flame.

  3. Mathematical Model Governing Equations ∂ρ − ∂ = x ( ρ ˜ u ) , ∂ ˜ ∂ ˜ t ∂ − ∂ u 2 + p − τ � � t ( ρ ˜ u ) = ρ ˜ , ∂ ˜ ∂ ˜ x u 2 u 2 � � e + ˜ �� � � e + ˜ � � ∂ − ∂ 2 + p ρ − τ + J q = ρ ˜ ρ u , ∂ ˜ 2 ∂ ˜ x ρ t ∂ − ∂ uY i + J m t ( ρY i ) = x ( ρ ˜ i ) + ˙ ω i M i , i = 1 , . . . , N − 1 . ∂ ˜ ∂ ˜

  4. Constitutive Relations „ 1 N „ « 1 « 1 M i D ik Y k ∂χ k 1 − M k ∂p ∂T X J m − D T = x + ρ x , i i ∂ ˜ ∂ ˜ ∂ ˜ M χ k M p x T k =1 k � = i „ 1 N N D T „ « 1 « ∂χ i 1 − M i ∂p J q X J m X i = q + x + i h i − ℜ T , M i χ i ∂ ˜ M p ∂ ˜ x i =1 i =1 − k ∂T = q x , ∂ ˜ N ρY i X p = ℜ T M i , i =1 and others . . .

  5. Dynamical System Formulation • PDEs − → ODEs d dx ( ρu ) = 0 , d dx ( ρuh + J q ) = 0 , d dx ( ρuY e l + J e l ) = 0 , l = 1 , . . . , L − 1 , d dx ( ρuY i + J m i ) = ω i M i , ˙ i = 1 , . . . , N − L. • ODEs − → 2 N + 2 DAEs A ( z ) · d z dx = f ( z ) .

  6. A Posteriori Length Scale Analysis • Standard eigenvalue analysis is not applicable; A is singular. • The generalized eigenvalues can be calculated – from λ A ∗ · v B ∗ · v , = – and the length scales are given by 1 ℓ i = i = 1 , . . . , 2 N − L. | Re ( λ i ) | ,

  7. Results Steady Laminar Premixed Hydrogen-Air Flame • N = 9 species, L = 3 atomic elements, and J = 19 reversible reactions, • Stoichiometric Hydrogen-Air: 2 H 2 + ( O 2 + 3 . 76 N 2 ) , • T unburned = 800 K , • p o = 1 atm , • CHEMKIN and IMSL are employed.

  8. Mathematical Verification • Good agreement with Smooke et al., ’83 . 0.6 2500 0.6 HO 2 × 10 3 Temperature 0.5 0.5 2000 0.4 0.4 1500 [K] [K] χ i H 2 O χ i 0.3 0.3 H × 10 1 T 1000 0.2 0.2 O 2 OH × 10 1 500 0.1 0.1 H 2 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 x x [cm] [cm]

  9. Experimental Validation • Good agreement with Dixon-Lewis, ’79. Experimental data 350 compiled by Dixon−Lewis, ’79. Present work 300 250 [cm/sec] 200 S 150 100 50 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 χ H 2

  10. Fully Resolved Structure 0 10 N 2 H 2 O O 2 H 2 H −5 10 HO 2 H 2 O 2 Y i −10 10 OH O −15 10 −5 −4 −3 −2 −1 0 1 2 10 10 10 10 10 10 10 10 x [cm]

  11. Predicted Length Scales 8 10 6 10 4 10 [cm] 2 10 ℓ i 0 10 −2 10 ℓ finest ∼ 10 − 4 cm −4 10 −5 −4 −3 −2 −1 0 1 2 10 10 10 10 10 10 10 10 x [cm]

  12. Mean-Free-Path Estimate • The mixture mean-free-path scale is the cutoff minimum length scale associated with continuum theories. • A simple estimate for this scale is given by Vincenti and Kruger, ’65 : M √ ℓ mfp = 2 N πd 2 ρ.

  13. • ℓ finest is well correlated with ℓ mfp . 4 10 2 10 ℓ reaction Length scales [cm] 0 10 −2 10 ℓ finest −4 10 ℓ mfp −6 10 −1 0 1 10 10 10 Pressure [atm]

  14. Extensions • Two additional sets of calculations: – Variable fuel/air ratio, – Hydrocarbon mixtures (methane, ethane, ethylene, acetylene). • Two combustion regimes: – Freely propagating laminar fl ame, – Chapman-Jouguet detonation ( Powers and Paolucci, ’05 ).

  15. Equivalence ratio infl uence is negligible 2 2 10 10 ℓ reaction 0 0 Length scales [cm] Length scales [cm] 10 10 ℓ induction −2 −2 10 10 ℓ finest ℓ finest −4 −4 10 10 ℓ mfp ℓ mfp −6 −6 10 10 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 Φ Φ (a) Laminar premixed fl ame (b) Chapman-Jouguet detonation

  16. Defl agration Methane−Air Ethane−Air 2 2 10 10 ℓ reaction ℓ reaction Length scales [cm] 0 Length scales [cm] 0 10 10 −2 −2 10 10 ℓ finest −4 ℓ finest −4 10 10 ℓ mfp ℓ mfp −6 −6 10 10 0 1 0 1 10 10 10 10 Pressure [atm] Pressure [atm] Acetylene−Air Ethylene−Air 2 2 10 10 ℓ reaction ℓ reaction Length scales [cm] Length scales [cm] 0 0 10 10 −2 −2 10 10 ℓ finest ℓ finest −4 −4 10 10 ℓ mfp ℓ mfp −6 −6 10 10 0 1 0 1 10 10 10 10 Pressure [atm] Pressure [atm]

  17. Detonation Methane−Air Ethane−Air ℓ induction ℓ induction 0 0 10 10 Length scales [cm] Length scales [cm] −2 −2 10 10 −4 −4 10 10 ℓ finest ℓ finest ℓ mfp ℓ mfp −6 −6 10 10 0 1 0 1 10 10 10 10 Pressure [atm] Pressure [atm] Acetylene−Air Ethylene−Air 0 ℓ induction 0 10 10 ℓ induction Length scales [cm] Length scales [cm] −2 −2 10 10 −4 −4 10 10 ℓ finest ℓ finest ℓ mfp ℓ mfp −6 −6 10 10 0 1 0 1 10 10 10 10 Pressure [atm] Pressure [atm]

  18. Comparison with Published Results ∆ x, ( cm ) ℓ finest , ( cm ) ℓ mfp , ( cm ) Ref. Mixture molar ratio 2 . 50 × 10 − 2 8 . 05 × 10 − 4 4 . 33 × 10 − 5 1 . 26 H 2 + O 2 + 3 . 76 N 2 1 6 . 12 × 10 − 4 4 . 33 × 10 − 5 CH 4 + 2 O 2 + 10 N 2 2 unknown 3 . 54 × 10 − 2 4 . 35 × 10 − 5 7 . 84 × 10 − 6 0 . 59 H 2 + O 2 + 3 . 76 N 2 3 1 . 56 × 10 − 3 2 . 89 × 10 − 5 6 . 68 × 10 − 6 CH 4 + 2 O 2 + 10 N 2 4 1. Katta V. R. and Roquemore W. M., 1995, Combustion and Flame , 102 (1-2), pp. 21-40. 2. Najm H. N. and Wyckoff P . S., 1997, Combustion and Flame , 110 (1-2), pp. 92-112. 3. Patnaik G. and Kailasanath K., 1994, Combustion and Flame , 99 (2), pp. 247-253. 4. Knio O. M. and Najm H. N., 2000, Proc. Combustion Institute , 28 , pp. 1851-1857.

  19. Discussion A lower bound for the grid resolution is desirable • Grid convergence, ( Roache, ’98 ). – Convergence rate must be consistent with truncation error order. – Grids coarser than the finest length scale could unphysically infl uence reaction dynamics. • Direct numerical simulation (DNS). – Our results are in rough agreement with independent estimates ows, ∆ x = 4 . 30 × 10 − 4 cm , ( Chen found in DNS of reacting fl et al., ’06 ).

  20. The modified equation for a model problem ν ∂ 2 ψ ∂ψ ∂t + a ∂ψ = ∂x 2 , ∂x ψ n +1 ψ n i − ψ n ψ n i +1 − 2 ψ n i + ψ n − ψ n i − 1 i − 1 i i + a = ν , ∆ x 2 ∆ t ∆ x 0 1 B „ « C ∂ 2 ψ ∂ψ ∂t + a ∂ψ a ∆ x 1 − a ∆ t B C = ν + B C ∂x 2 B C ∂x 2 ∆ x @ A | {z } leading order numerical diffusion „ a ∆ t ! « 2 + a ∆ x 2 ∂ 3 ψ + 6 ν ∆ t − 1 + ∂x 3 + . . . ∆ x 2 6 ∆ x | {z } leading order numerical dispersion • Discretization-based terms alter the dynamics. • Numerical diffusion could suppress physical instability.

  21. • To solve for the steady structure ν d 2 ψ adψ = dx 2 , dx � ax � Exact solution ⇒ ψ = C 1 + C 2 exp . ν – Analogous to what has been done in our work λ = [0 a/ν ] , ⇒ ℓ finest = ν/a. – The required grid resolution is ∆ x < ν/a . • This grid size guarantees that the steady parts of the dissipation and dispersion errors in the model problem are small.

  22. Implications for combustion • Equilibrium quantities are insensitive to resolution of fine scales. • Due to non-linearity, errors at micro-scale level may alter the macro-scale behavior. • The sensitivity of results to fine scale structures is not known a priori . • Lack of resolution may explain some failures, e.g. DDT. • Linear stability analysis: – Requires the fully resolved steady state structure. – For one-step kinetics, Sharpe, ’03 shows failure to resolve steady structures leads to quantitative and qualitative errors in premixed laminar fl ame dynamics.

  23. Conclusions • To formally resolve the one-dimensional steady reactive fl ow, micron-level resolution is needed. • Results will likely hold for multi-dimensional unsteady fl ows. • The finest length scales are fully refl ective of the underlying physics and not the particular mixture, chemical kinetics mech- anism, or numerical method. • The required grid resolution can be easily estimated a priori by a simple mean-free-path calculation. • Present steady results cannot show where unsteady models will fail, but accurate capture of bifucation dynamics will likely require capture of all scales.

Recommend


More recommend