Are VAR Models Good Enough for Forecasting Macroeconomic Variables? George Athanasopoulos Monash University Clayton, Victoria 3800 Australia and Farshid Vahid Australian National University Canberra, ACT 2601 Australia Corresponding author e-mail: George.Athanasopoulos@BusEco.monash.edu.au
In this paper: • Present and complete the “Scalar Component Methodology” of Tiao and Tsay (1989) for “developing” VARMA models • Study the properties of this methodology through simulations • Extensive application to Macro- Economic Data • Overall we find evidence of superiority of VARMA models for forecasting
VAR v VARMA • VAR(p) – Dominate the field of macro- econometric modelling – Good forecasting record • MOTIVATION for VARMA(p,q) – More general – Parsimonious representations • any invertible VARMA can be represented by an infinite order VAR • effects on forecasting – Aggregation: • induces MA dynamics – See Lütkepohl (1987) where a linearly transformed: • VARMA process has a finite VARMA(p,q) representation • However not necessarily the case with VAR
• VARMA difficulties – Chatfield “If univariate ARIMA modelling is difficult then VARMA modelling is even more difficult - some might say impossible” • General VARMA(p,q) model y t y 1 t ,....., y kt y t 1 y t 1 .... p y t p t 1 t 1 .... q t q where t N 0, and is positive definite • Identification problem – Echelon form • Lütkepohl and Poskitt (1996) – Scalar Components • Simplifying Underlying Structures
Identification Problem • Consider a k = 2 y t ~ VARMA(1,1) y t y t 1 t t 1 11 12 11 12 0 • y 1, t 1, t y 2, t 21 y 1, t 1 22 y 2, t 1 21 1, t 1 22 2, t 1 2, t • 21 and θ 21 are not separately identified • “Rule of Elimination” Scalar Component Methodology (Tiao and Tsay, JRSS, 1989) • Definition: y t VARMA p , q z t y t SCM p 1 , q 1 p 1 0 T where 0 p 1 p , if satisfies l 0 T for l p 1 1,..., p , q 1 0 T where 0 q 1 q , q 1 0 T for l q 1 1,..., q .
• Find k-linearly independent vectors A 1 , , k which transform y t 1 y t 1 p y t p t 1 t 1 q t q into z t 1 p u t 1 q z t p u t 1 u t q z t 1 A i A 1 , u t A t and i A i A 1 where z t Ay t , i • A series of C/C tests: 1 2 k Let be the squared C/C and Y h , t j 1 , y t m between Y m , t y t , y t j 1 h y t j 1 then the LR test statistic: i C s n h j i 1 a s ln 1 ~ s h m k s 2 d i tests for s SCM s of order (m,j) versus the alternative of less than s SCM s of this order. d i is a correction factor accounting for the cases that the canonical covariates can be MA(j)
• EXAMPLE: y t = (y 1,t , y 2,t ,…, y k,t ) T • sequence of C/C tests • Underlying WN process z i,t ~ SCM(0,0) – Is there a linear combination of y t which has zero correlation with y t-1 ,…? • MA(1) process z i,t ~ SCM(0,1) – Is there a linear combination of y t which has zero correlation with y t-2 ,… given that it has one period serial correlation? • AR(1) process z i,t ~ SCM(1,0) – Is there a linear combination of y t and y t-1 which has zero correlation with y t-1 ,…? • ARMA(1,1) process z i,t ~ SCM(1,1) – Is there a linear combination of y t and y t-1 which has zero correlation with y t-2 ,…? – and so on … • Up to i = 1 ,…, k such combinations • “Criterion” and “Root” tables
Identified Model (for k = 3) 1 1 1 1 1 1 11 12 13 11 12 13 1 1 1 z t z t 1 u t 21 22 23 u t 1 0 0 0 0 0 0 0 0 0 z 3, t u 3, t z 3, t 1 u 3, t 1 2 1 j 2 1 j 1 1 1 1 u 3, t 1 j 1 z j , t 1 u 1, t j 1 z 1, t 13 z 3, t 1 13 u j , t 1 1 12 1 13 1 12 1 0 1 11 11 1 22 1 23 1 z t z t 1 u t 21 u t 1 0 0 0 0 0 0 0 0 0 or Ay t 1 y t 1 t 1 t 1 Concerns: (Hannan, Reinsel, Chatfield, Tunnicliffe-Wilson, Ord etc.) Transformed series z t # of parameters in A Real reduction in parameters is less than 10 C/C estimates not most efficient No standard errors in A
Extension to Tiao and Tsay • Keep the model in terms of y t 1 12 1 13 1 12 1 0 1 11 11 a 11 a 12 a 13 1 22 1 23 y t 1 y t 1 t t 1 21 a 21 a 22 a 23 0 0 0 a 31 a 32 a 33 0 0 0 0 0 0 • Normalise 1 12 1 13 1 12 1 0 1 11 11 1 a 12 a 13 1 22 1 23 y t 1 y t 1 t t 1 21 1 a 21 a 23 0 0 0 1 a 31 a 32 0 0 0 0 0 0 • Set of rules for determining the free parameters in A – 3 rd equation uniquely identified – SCM(0,0) is nested in SCM(1,0) and SCM(1,1) 1 12 1 13 1 12 1 0 1 11 11 1 a 12 0 1 22 1 23 y t 1 y t 1 t t 1 1 0 21 a 21 0 0 0 a 31 a 32 1 0 0 0 0 0 0 – SCM(1,0) is nested in SCM(1,1) 1 12 1 13 1 12 1 0 1 11 11 1 0 0 1 22 1 23 y t 1 y t 1 t t 1 21 1 0 a 21 0 0 0 a 31 a 32 1 0 0 0 0 0 0 • Number of parameters reduced by: 10-3 = 7
Checking for Correct Normalisations • Safeguard against normalising a zero parameter to 1. • Apply the C/C test to subsets of variables Example (continued) 1 12 1 13 1 12 1 0 1 11 11 1 0 0 1 22 1 23 y t 1 y t 1 t t 1 1 0 21 a 21 0 0 0 a 31 a 32 1 0 0 0 0 0 0 Check for individual y 1,t , y 2,t or y 3,t ~ SCM(0,0) If yes set that coefficient to one If not check for combinations of two and so on… • The number of parameters to be estimated can potentially be further reduced Summary of Extension • Keep model in terms of y t • Provide set of rules for determining the free parameters parameters in A • Safeguard against normalising a zero parameter to 1 • Estimate the model by FIML
• Example: US flour price data Tiao and Tsay (1989), Grubb (1992), Lutkepohl and Poskitt (1996) 5.5 5.3 5.1 4.9 4.7 4.5 4.3 y1t Buffalo y2t Minneapolis y3t Kansas • Stage I : Overall Tentative Order Criterion Table j 0 1 2 3 4 m 0 34.17 5.8 3.0 2.11 1.68 1 2.38 0.44 0.49 0.22 0.34 2 0.58 0.60 0.49 0.46 0.25 3 0.37 0.46 0.67 0.53 0.58 4 0.73 0.62 0.57 0.70 0.77 The statistics are normalised by the corresponding 5% 2 critical values VAR(2) or VARMA(1,1)
• Stage II : Individual SCMs Root Table j 0 1 2 3 4 m 0 0 0 1 1 1 1 2 3 3 3 3 2 3 5 6 6 6 3 3 6 8 9 9 4 3 6 9 11 12 2 ~ SCM(1,0) and 1 ~ SCM(1,1) 1 12 1 13 1 12 1 13 1 1 11 11 1 a 12 a 13 1 22 1 23 1 y t y t 1 t t 1 21 1 a 21 a 23 0 0 0 1 32 1 33 1 1 31 a 31 a 32 0 0 0 1 12 1 13 1 12 1 13 1 1 11 11 1 1 22 1 23 1 y t y t 1 t t 1 21 1 0 0 0 1 32 1 33 1 1 31 0 0 0 • Normalisations check finds y 3,t ~ SCM(1,0) 1 12 1 13 1 12 1 13 1 1 11 11 1 0 0 1 22 1 23 1 y t y t 1 t t 1 21 a 21 1 0 0 0 0 1 32 1 33 1 0 0 1 31 0 0 0
• Application to Macro Data • Data – Stock and Watson (1999) & (2001) – 40 monthly series 1959:1 – 1998:12 (N=480) – 8 major categories: • Output and Real Income • Employment and Unemployment • Consumption, Retail Sales and Housing • Real Inventories and Sales • Prices and Wages • Money and Credit • Interest Rates • Exchange Rates – 70 3 variable systems • VARMA • VAR selected by AIC and SC • Restricted and Unrestricted • Forecasting and Forecast Evaluation – Test sample: N 1 = 300 – Hold-out: N 2 = 180 – h = 1 to 15 step ahead forecasts – PB of |FMSE| and tr(FMSE) | FMSE VAR i | M i 1 – Ratio h M 1 | FMSE VARMA i |
Recommend
More recommend