unit 6 introduction to trigonometry the unit circle unit
play

Unit 6 Introduction to Trigonometry The Unit Circle (Unit 6.3) - PowerPoint PPT Presentation

Unit 6 Introduction to Trigonometry The Unit Circle (Unit 6.3) William (Bill) Finch Mathematics Department Denton High School Introduction Trig Functions Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary


  1. Unit 6 – Introduction to Trigonometry The Unit Circle (Unit 6.3) William (Bill) Finch Mathematics Department Denton High School

  2. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Lesson Goals When you have completed this lesson you will: ◮ Find values of trigonometric functions for any angle. ◮ Find the values of trigonometric functions using the unit circle. W. Finch DHS Math Dept Unit Circle 2 / 25

  3. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Lesson Goals When you have completed this lesson you will: ◮ Find values of trigonometric functions for any angle. ◮ Find the values of trigonometric functions using the unit circle. W. Finch DHS Math Dept Unit Circle 2 / 25

  4. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Lesson Goals When you have completed this lesson you will: ◮ Find values of trigonometric functions for any angle. ◮ Find the values of trigonometric functions using the unit circle. W. Finch DHS Math Dept Unit Circle 2 / 25

  5. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Trigonometric Functions of Any Angle θ is an angle in standard position, y P ( x , y ) is a point on the terminal side, and r is the distance from P to P ( x , y ) θ the origin (denominators � = 0): r x sin θ = y csc θ = r r y Recall the equation of a cos θ = x sec θ = r circle centered at the r x origin: r 2 = x 2 + y 2 tan θ = y cot θ = x x y x 2 + y 2 � r = W. Finch DHS Math Dept Unit Circle 3 / 25

  6. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 1 The point ( − 3 , 2) is on the terminal side of an angle in standard position. Find the exact values of the six trigonometric functions of θ . W. Finch DHS Math Dept Unit Circle 4 / 25

  7. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Quadrental Angles Quadrental angles terminate on an axis. y y y y θ θ θ (0 , r ) θ x x x x ( r , 0) ( − r , 0) (0 , − r ) θ = 0 ◦ or θ = 90 ◦ or θ = 180 ◦ or θ = 270 ◦ or 0 radians π/ 2 radians π radians 3 π/ 2 radians W. Finch DHS Math Dept Unit Circle 5 / 25

  8. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 2 Find the exact value of each trigonometric function, if defined. If not defined, write undefined . a) cos π b) tan( − 270 ◦ ) c) sec 3 π 2 d) sin 5 π W. Finch DHS Math Dept Unit Circle 6 / 25

  9. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant II y sin θ = b sin θ ′ = b ( − a , b ) r r r b θ cos θ = − a cos θ ′ = a θ ′ x r r a tan θ = − b tan θ ′ = b a a W. Finch DHS Math Dept Unit Circle 7 / 25

  10. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant III y sin θ = − b sin θ ′ = b r r θ cos θ = − a cos θ ′ = a a x r r θ ′ tan θ = b tan θ ′ = b b r a a ( − a , − b ) W. Finch DHS Math Dept Unit Circle 8 / 25

  11. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant IV y sin θ = − b sin θ ′ = b r r θ cos θ = a cos θ ′ = a a x r r θ ′ tan θ = − b tan θ ′ = b b r a a ( a , − b ) W. Finch DHS Math Dept Unit Circle 9 / 25

  12. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Reference Angles If θ is an angle in standard position, its reference angle θ ′ is the acute angle formed by the terminal side of θ and the x -axis. y y y y θ θ θ θ ′ θ x x x x θ ′ θ ′ θ ′ = θ θ ′ = 180 ◦ − θ θ ′ = θ − 180 ◦ θ ′ = 360 ◦ − θ θ ′ = π − θ θ ′ = θ − π θ ′ = 2 π − θ W. Finch DHS Math Dept Unit Circle 10 / 25

  13. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 3 Sketch the angle and the identify its reference angle. a) − 150 ◦ b) 315 ◦ c) 3 π 4 d) 5 π 3 W. Finch DHS Math Dept Unit Circle 11 / 25

  14. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Evaluating Trigonometric Functions of Any Angle y 1. Sketch the angle. Quad II Quad I 2. Determine the reference angle θ ′ . sin θ : + sin θ : + cos θ : − cos θ : + 3. Find the value of the trig tan θ : − tan θ : + function for θ ′ . x Quad III Quad IV 4. Determine the sign (pos or neg) sin θ : − sin θ : − based on the quadrant cos θ : − cos θ : + tan θ : + tan θ : − containing the terminal side of θ . W. Finch DHS Math Dept Unit Circle 12 / 25

  15. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Special Reference Angles π π π θ (radians) 6 4 3 θ (degrees) 30 ◦ 45 ◦ 60 ◦ √ √ 1 2 3 sin θ 2 2 2 √ √ 3 2 1 cos θ 2 2 2 √ √ 3 tan θ 1 3 3 W. Finch DHS Math Dept Unit Circle 13 / 25

  16. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 4 Find the exact value of each expression. a) sin 4 π 3 b) sec 15 π 4 c) tan 150 ◦ d) cos ( − 120 ◦ ) W. Finch DHS Math Dept Unit Circle 14 / 25

  17. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 5 √ 29 Let sec θ = 5 , where sin θ > 0. Find the exact values of the remaining five trigonometric functions of θ . W. Finch DHS Math Dept Unit Circle 15 / 25

  18. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary The Unit Circle A unit circle is a circle of y radius 1 centered at the origin. (0 , 1) The radian measure of a central angle is r s θ θ = s r = s x 1 = s r ( − 1 , 0) (1 , 0) so the arc length intercepted by θ equals the angle’s radian (0 , − 1) measure. W. Finch DHS Math Dept Unit Circle 16 / 25

  19. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary The Unit Circle and the Wrapping Function Place a number line vertically y tangent to a unit circle at (1 , 0). P ( x , y ) Wrap this line around the circle t (counterclockwise for positive values t and clockwise for negative values), x each point t on the line would map to 1 (1 , 0) a unique point P ( x , y ) on the circle. This is referred to as the wrapping function w ( t ). Since r = 1, the six trigonometric rations of angle t can be defined in terms of just x and y . W. Finch DHS Math Dept Unit Circle 17 / 25

  20. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Trigonometric Functions on the Unit Circle y P ( x , y ) csc t = 1 sin t = y P (cos t , sin t ) y t sec t = 1 t cos t = x x x 1 tan t = y cot t = x x y And, of course, no These functions are referred to denominator = 0. as circular functions W. Finch DHS Math Dept Unit Circle 18 / 25

  21. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary 16-Point Unit Circle y (0 , 1) √ √ � � � � − 1 2 , 3 2 , 1 3 2 2 � √ √ √ √ � � � 2 2 2 2 − 2 , 2 , 90 ◦ 2 2 120 ◦ 60 ◦ � √ √ � � � 2 , 1 3 2 , 1 3 − 2 135 ◦ 45 ◦ 2 π 2 π 2 π 150 ◦ 3 3 30 ◦ 3 π π 4 4 5 π π 6 6 ( − 1 , 0) (1 , 0) π x 180 ◦ 2 π 360 ◦ 0 ◦ 7 π 11 π 6 5 π 6 7 π 210 ◦ 4 4 330 ◦ 4 π 5 π 3 3 π 3 � √ 2 √ � � 225 ◦ 315 ◦ � 2 , − 1 3 2 , − 1 3 − 2 2 240 ◦ 300 ◦ � √ √ √ √ � � � 2 , − 2 2 270 ◦ 2 , − 2 2 − 2 2 √ √ � � � � − 1 3 1 3 2 , − 2 , − 2 2 (0 , − 1) W. Finch DHS Math Dept Unit Circle 19 / 25

  22. Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary 16-Point Unit Circle y (0 , 1) √ (0 , 1) √ � � � � − 1 3 1 3 2 , 2 , √ 2 � � 2 1 3 � √ √ √ 2 , √ � � � 2 2 2 2 − 2 , 2 , 2 90 ◦ 2 2 � √ √ 120 ◦ 60 ◦ � � √ √ 2 2 � � 2 , � 2 , 1 3 2 , 1 3 − ◦ 2 135 ◦ 45 ◦ 2 2 π 2 2 π 60 ◦ π � √ 150 ◦ 3 30 ◦ 3 3 π � π 2 , 1 3 4 4 5 π 45 ◦ π 2 6 6 ( − 1 , 0) (1 , 0) π π 180 ◦ 3 30 ◦ 2 π 360 ◦ 0 ◦ x π 4 π 7 π 11 π 6 6 5 π 6 7 π 210 ◦ 4 4 330 ◦ 4 π 5 π 3 3 π 3 (1 , 0) (1 , 0) 2 � √ √ � � 225 ◦ 315 ◦ � 2 , − 1 3 2 , − 1 3 x − 2 2 240 ◦ 300 ◦ � √ √ √ √ � � � 2 2 270 ◦ 2 2 − 2 , − 2 , − 2 2 √ √ � � � � − 1 3 1 3 2 , − 2 , − 2 2 (0 , − 1) W. Finch DHS Math Dept Unit Circle 20 / 25

Recommend


More recommend