unification observable landscapes and new particles at
play

UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC - PowerPoint PPT Presentation

UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC Raffaele Tito DAgnolo - IAS Princeton A First Glance Beyond the Energy Frontier 9/9/2016-ICTP THE MOST EXCITING LHC RESULT THE HIGGS IS LIGHT AND THERE IS NOTHING


  1. UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC Raffaele Tito D’Agnolo - IAS Princeton A First Glance Beyond the Energy Frontier 9/9/2016-ICTP

  2. THE MOST EXCITING LHC RESULT THE HIGGS IS LIGHT AND � THERE IS NOTHING RELATED TO NATURALNESS 2

  3. THE MOST EXCITING LHC RESULT 1. IS IT REASONABLE TO EXPECT NEW PARTICLES AT THE LHC? 2. WHAT ABOUT THE HIGGS MASS? 3

  4. SOME PERSPECTIVE 1935 Never π µ vs 1947 1936 4

  5. SOME PERSPECTIVE 3000 ��������� 2-3 orders ��������� 2500 _ ˜ � �� ˜ � � ( GeV ) � of magnitude � � = �� ��� in 2000 m g σ 1500 1000 10 - 1 10 2 10 3 1 10 L ( fb - 1 ) 5

  6. SOME PERSPECTIVE √ s = 13 TeV < 10% 6

  7. UNIFICATION N. Arkani-Hamed, RTD, M. Low, D. Pinner � 1608.01675

  8. EXPERIMENTAL HINTS PROTON AND GAUGE COUPLING ELECTRON CHARGE UNIFICATION 8

  9. EXPERIMENTAL HINTS PROTON AND GAUGE COUPLING ELECTRON CHARGE UNIFICATION NULL INDIRECT VECTOR-LIKE RESULTS (EWPTS,…) PARTICLES 9

  10. MATTER CONTENT • (PERTURBATIVE) GAUGE COUPLING UNIFICATION • VECTOR-LIKE FERMIONS . 4 × ( 5 + ¯ 5 ) AT THE WEAK SCALE . ( 5 + ¯ � � 5 ) + 10 + 10 10

  11. MATTER CONTENT WEAKLY COUPLED 5 = ( D, L c ) 10 = ( Q c , E, U c ) NO REASON TO BE WELL KNOWN NEAR THE PHENOMENOLOGY WEAK SCALE 11

  12. VECTOR-LIKE CONFINEMENT SM 5 + ¯ 5 FERMIONS SM FORCES G H LEPTONS QUARKS γ COLOR 12

  13. CONFINING GROUPS G H N.B. Only their fundamental representations are asymptotically free ( ) N F ≥ 5 13

  14. CONFINING GROUPS Example 3 × ( 5 + ¯ 5 ) N F = 5 14

  15. CONFORMAL WINDOW ONE MORE INGREDIENT: SUSY IN THE UV ALL(*) OUR THEORIES ARE IN THE CONFORMAL WINDOW 3 N c / 2 < N F < 3 N c SU(N c ) 3( N c + 1) / 2 < N F < 3( N c + 1) Sp(N c ) (*) SU(4) N F ≥ 7 15

  16. CONFORMAL WINDOW Λ ∼ TeV − 100 TeV 16

  17. SIGNALS

  18. CHIRAL SYMMETRY SU ( N F ) × SU ( N F ) SU(3) H , SU(4) H SU ( N F ) N F ≥ 5 SU (2 N F ) SU(2) H , Sp(4) H Sp (2 N F ) 18

  19. PIONS 24 + ∆ ( 5 + 5 ) SU(3) H , SU(4) H + ∆ 2 1 ∆ = N F − 5 24 + 10 + 10 SU(2) H , Sp(4) H + 2 ∆ ( 5 + 5 ) + ∆ (2 ∆ − 1) 1 19

  20. PIONS EXAMPLE: of SU(5) 24 20

  21. INTERACTIONS REAL COMPLEX 21

  22. MASSES SIMPLEST SCENARIO: ONLY SM GAUGE INTERACTIONS BREAK THE FLAVOR SYMMETRY EXPLICITLY m 2 ∼ ( α s / 4 π ) Λ 2 m 2 ∼ ( α w / 4 π ) Λ 2 m ∼ 50 keV m 2 ∼ ( α s / 4 π ) Λ 2 22

  23. SUMMARY WEAK SCALE MASSES NEARLY MASSLESS π 8 π 1 Q X π 3 PROMPT DECAYS COLORED STABLE TO VV A HANDFUL OF PARAMETERS DETERMINES ALL THEIR PHENOMENOLOGY 23

  24. SUMMARY, PART II DIJETS,MULTIJETS, m ∼ TeV COLORED SQUARKS, σ ∼ 0 . 1 pb LEPTOQUARKS EW CHARGED m ∼ 400 GeV MULTI-W,Z, , γ SLEPTONS σ ∼ few fb SN1987A, f a ∼ TeV ALPs, LIGHT BEAM DUMPS, HIGGSES s θ . 1% LHCb, Belle, … 24

  25. POSSIBLE DEDICATED SEARCHES • SPECTACULAR CASCADES [ jl + ( l − ¯ ν )][ jl − ( l + ν )] � • jZ RESONANCES ( jZ ) , ( jZ )( jj ) , ( jZ )( j γ ) � • FOUR WEAK GAUGE BOSONS • EXOTIC LEPTOQUARKS tl, τ j 25

  26. N. Arkani-Hamed, RTD, A.Hook, H.D. Kim,M. Low � Very Preliminary LOW ENERGY LANDSCAPES

  27. IDEAL OUTCOME MAKE THE HIGGS LIGHT BY TUNING ONLY Λ 27

  28. BONUS SIGNALS OF LOW ENERGY LANDSCAPES 28

  29. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l 29

  30. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l • AT LOW ENERGY WE INCLUDE ADDITIONAL 2 N DEGENERATE VACUA φ 2 φ 4 V ⊃ − m 2 X X i i 2 + λ 4 i i N.B. h φ i i ⇠ M P l 30

  31. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l • AT LOW ENERGY WE INCLUDE ADDITIONAL 2 N DEGENERATE VACUA φ 2 φ 4 V ⊃ − m 2 X X i i 2 + λ � 4 i i • THE HIGGS VEV BREAKS THE DEGENERACY X V ⊃ mH 1 H 2 ✏ i � i i 31

  32. BOUNDS ON THE HIGGS VEV ∗ . mM P l h H 1 H 2 i ⌘ v 2 ✏ 32

  33. BOUNDS ON THE HIGGS VEV ∆ V & Λ ∗ Λ ∗ v 2 ∗ & ✏ mM P l 33

  34. THE WEAK SCALE Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ v 4 , m ∼ v 2 /M P l , FOR SIMPLICITY AT THE MOMENT v ∗ ∼ v I AM TAKING ✏ = O (1) 34

  35. PHENOMENOLOGY N ∼ 6 log[ v 4 / (meV) 4 ] ∼ 10 2 SCALARS v 2 ∼ (few cm) − 1 m ∼ MEDIATING M P l LONG RANGE FORCES L ⊃ m ψ X ¯ WEAKER THAN GRAVITY ✏ i � i M P l i 35

  36. SOME WIGGLE ROOM √ ✏ ∼ 1 / N Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ ✏ 2 v 4 m ∼ ✏ × (cm) − 1 m ∼ ✏ v 2 v ∗ ∼ v G N × ✏ M P l 36

  37. SOME WIGGLE ROOM √ ✏ ∼ 1 / N Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ v 4 m ∼ ( ✏ × cm) − 1 v 2 . v 2 ∗ . v 2 / ✏ 2 v 2 G N × ✏ m ∼ ✏ M P l 37

  38. SUPERSYMMETRIC CASE X φ 3 W ⊃ µH u H d + κ i i X X φ 3 W ⊃ λ φ i H u H d + κ i i i ... h φ i i ⇠ TeV SAME IDEA, BUT THIS TIME IS NATURAL 38

  39. PHENOMENOLOGY NEW HIGGS-LIKE PARTICLES AT THE LHC φ CASCADES φ H φ HIGGS COUPLING DEVIATIONS 39

  40. CONCLUSION • SURPRISINGLY LEP AND LHC HAVE NOT YET UNVEILED THE SOLUTION TO THE HIERARCHY PROBLEM • NONETHELESS THE LHC HAS STILL A HUGE PHYSICS POTENTIAL • AND THERE ARE MANY OTHER REASONS TO EXPECT NEW PARTICLES OTHER THAN NATURALNESS, SOME OF WHICH UNEXPECTED: • LOW ENERGY LANDSCAPES • UNIFICATION + IR FIXED POINTS 40

  41. BACKUP

  42. CONSTRAINTS M = M D = 2 M L 7 collider stable E g r = 4 p Q Y Q Y * Æ j m j m 2 6 collider stable Q X 5 L H TeV L E + E - Æ { + { - nn 4 Q Y Q Y * Æ b t b t 3 p 8 Æ jj p 8 p 8 Æ 4 j 2 r 8 Æ jj 1 0.1 1 10 100 M H GeV L 42

  43. REAL PIONS BRs gg gg gg 1 W g ZZ gg WZ Z g 10 - 1 branching ratio WW WW ZZ g g ZZ 10 - 2 Z g gg gg gZ Z g 10 - 3 p 30 p 3 ± p ' p 1 p 8 43

  44. “STABLE” PIONS M ∗ SM 5 + ¯ 5 FERMIONS SM FORCES G H W, Z LEPTONS MESONS γ COLOR 44

  45. “STABLE” PIONS f � µ d c @ µ Q X ` ¯ M 2 ∗ ◆ 2 ✓ 3 TeV ◆ 2 ✓ ◆ 4 ✓ (1 GeV) 2 ✓ 0 . 1 ◆ ✓ 1 TeV ◆ M ∗ τ ' 0 . 1 mm a + m 2 10 TeV m 2 Λ c i M π b Λ f Q X d c ˜ H u M 2 ∗ ◆ 2 ✓ 3 TeV ◆ 4 ✓ ◆ 4 ✓ 1 TeV ✓ 0 . 1 ◆ M ∗ τ ' 10 − 11 m Λ c i 10 TeV M π 45

  46. FLAVOR W ⊃ M Φ ΦΦ c + � L,i Φ c L c ` i + � D,i Φ c Dd c i + M L LL c + M D DD c ◆ 2 ✓ λ D,s λ ∗ λ L,e λ ∗ L,µ e m µ σ µ s c ) 2 + D,d ( ¯ d c ¯ ( µ c σ µ ν e L ) F µ ν + ... L ⊃ M 2 4 π M Φ 16 π 2 Φ K − ¯ K µ → e γ < ( M Φ / ( λ D,s λ ∗ D,d )) & 80 TeV M 2 L,µ ) & (60 TeV) 2 Φ / ( λ L,e λ ∗ D,d )) & 1 . 3 ⇥ 10 3 TeV = ( M Φ / ( λ D,s λ ∗ 46

Recommend


More recommend