ultrafast energy saving optica optical
play

ultrafast energy-saving optica optical semiconductor devices to - PowerPoint PPT Presentation

If anybody likes to keep this talks slides , please email me ! Roadmap of ultrafast energy-saving optica optical semiconductor devices to Year 2025 to Year 2025 --- <speed, energy, size> estimates of optical Micro Processor Unit ---


  1. If anybody likes to keep this talk’s slides , please email me ! Roadmap of ultrafast energy-saving optica optical semiconductor devices to Year 2025 to Year 2025 --- <speed, energy, size> estimates of optical Micro Processor Unit --- Yoshiyasu UENO National Univ. of Electro-Communications (UEC) Tokyo, Japan 42nd ssdm, Tokyo, Sept. 22, 2010 42 d d T k S t 22 2010 1 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  2. Contents Contents [1] Total energy consumptions in ICT technology [ ] gy p gy [2] Recent trends of optical-data-processing devices <speed, energy, size> [3] All-Optical gates: from principles to new potentials <speed, energy, size> [4] Crude estimates about “optical MPU” (long-term research) (first time, too, to our knowledge) Co authors and Collaborations Co-authors and Collaborations 2 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  3. [1] Impacts of ICT energy consumptions [1] Energy consumptions in ICT-related systems [1] Energy consumptions in ICT-related systems Conventional Technol. (electronic MPU’s) Around 2005, Clk freq. reached 3 GHz. Nuclear Power-Station S Nano-materials inside MPU’s are nearly melt. 1 GW / reactor ( 37 years of Moore’s law, IEEE 2008) In Data Centers of Google, Microsoft, etc. ata Ce te s o Goog e, c oso t, etc Dual/ D l/ saturating Clk freq.: 3 GHz, with similar MPU’s peed (GHz) Quad 4.0 speed Heat-energy dissipation: 10 kW / sever rack 3.0 Data-center energy: 20 MW / data center Si Single processor l 2.0 rosessorclk s Cost of DRAM 1.0 We need ultrafast & energy-saving 0.0 Optical Transistors p Pr 1980 1990 2000 2008 in future ! Calendar Year 3 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  4. [1] Impacts of ICT energy consumptions Electric-energy consumptions, 1970-2006 1000.0 (EJ) y electricity he country ( 100.0 supply in th ply, for e generating 系列 1 Japan P.R. China 系列 2 India 系列 3 Japan 10.0 ergy supp electricity s Supply for EU (15) 系列 4 UK UK 系列 5 USA 系列 6 mary ene 1.0 1 0 W World ld ary Energy annual total 系列 7 Prim Prima the a 0.1 2010 1990 1970 1970 1980 1990 2000 2010 Year Yoshiyasu Ueno, February 2010 *1) Source: International Energy Agency (IEA), Paris, gy g y ( ) ) Energy balances of OECD countries and non-OECD countries. *2) 1 EJ= 1 × 10 18 J. Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  5. [1] Impacts of ICT energy consumptions Macro-scopic: Primary Energy Supplies (sum of electricity and non-electricity), 2006 Primary Energy Supplies USA Ratios of energy for electricity 2006) 100 China China 90 90 EU EU rgy Supply (EJ, 2 USA Japan 80 EJ, 2006) for non-electricity 70 100 60 for electricity 90 50 incl. China China tal Primary Ener 40 rgy Supply ( 80 Vehicles, 30 Jets, etc. EU 70 20 of today 60 10 Japan Japan 0 50 Tot mary Ener Japan China India EU15 UK USA 40 43% India USA 30 GDP’s (2006) 39% Electric Vehicles, 12,000 20 EU 36% 06) next ?? next ?? 39% 39% Chi China × 10 9 USD, 200 otal Pri 10 10,000 0 Japan 8,000 T Japan China India EU15 UK USA 6,000 GDP ( × *1) Source: International Energy Agency (IEA) Paris *1) Source: International Energy Agency (IEA), Paris, 4,000 Energy balances of OECD countries and non-OECD countries. *2) 1 EJ= 1 × 10 18 J. 2,000 Data Centers in USA consuming 1.5% of all electricity (D. Miller, Stanford). 0 Japan China India EU15 UK USA not very large??  1 5% correspondes to 10 nuclear reactors !! not very large??  1.5% correspondes to 10 nuclear reactors !!  We need energy-saving devices. Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  6. [1] Impacts of ICT energy consumptions Micro-scopic: one origin of ICT-energy consumptions Tr-number times Clk-freq. has evolved by a factor of 10 6 × 10 4 = 10 10 (in 40 years) Tr ・ Clk Product Zetta 1.E+21 Tr number: 10 6 Tr number: 10 6 1.E+20 1 E+20 Moore’s magic Clk freq.: 10 4 1.E+19 Exa 1.E+18 • FLOPS speed has increased by 10 10 . 1.E+17 1.E+16 Cray Jaguar, • MIPS speed has increased by 10 4 , only, Peta IBM Roadrunner -> 1.E+15 without supported by Tr number. NEC-Sun Tsubame -> 1.E+14 (reasonable) NEC Earth simulator -> 1 E+13 1.E+13 Tera • Already relying on parallel-processing MPU’s and software. Core 2 Quad 1.E+12 (2007) many-folded parallel-structures are probably pushing-up Pen 4 1.E+11 (2002) electric-energy consumptions (and costs). Pentium Pro 1.E+10 [hard to quantitatively characterize now though ] [hard to quantitatively characterize now, though.] (1996) (1996) Giga 1.E+09 Cray-1 -> 80386 1.E+08 (1985) 8086 1.E+07 (1978) ? for 2010-2050: ? for 2010-2050: Increasing demands are Increasing demands are 1.E+06 1.E 06 1.E+05 FLOPS-type demands, or, MIPS-type demands ?? Y. Ueno, February 2010 1.E+04 no. of Trs. times clk freq. 10x every 4 yrs. 1960 1970 1980 1990 2000 2010 2020 FLOPS 10x every 4 yrs. y y Sources: FLOPS from measured results, MIPS from wikipedia. Instructions per sec. 10x every 7 yrs. 6 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  7. [1] Impacts of ICT energy consumptions to move from electronics to optics: its famous weakness Latest degrees of integrations for optical-processing devices g g p p g Number of devices on one chip= 200 (Infinera, 2006)  evolving steadily, driven by industrial demands, g y, y , and approaching the number 2,300 in intel 4004 (1971). 2,300 ents l compone Electronic processor 200 Intel 4004 (1971) ne chip) (in on # of optical # Eindhoven Univ. Technol., Netherlands source: CIP Technologies, UK. M K Smit (Eindhoven U Technol ) IEEE LEOS Annual 2008 M.K. Smit (Eindhoven U. Technol.), IEEE-LEOS Annual 2008. 7 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  8. [2] Optical data processing “gates and memories” [2] Optical-data-processing gates and memories All-Optical circuits w/ gates & memories Y. Ueno, UEC, 2010 Optical data Optical data Optical data Drive energy (electric dc-bias) 8 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  9. [2] Latest optical gates and memories [2] Optical-data-processing “gates and memories” <speed, energy, size> (2-1) Optical buffer memories (fundamental-research) 25Gb/s, 1pJ/bit, (30 µ m) 2 40-160Gb/s, L= few mm long 40-100Gb/s, 3pJ/bit, (10 µ m) 2 M.T. Hill (Smit Gr., Eindhoven), E. Kehayas (Dorren Gr., Eindhoven) T Katayama (Kawaguchi Gr ) 2009 T. Katayama (Kawaguchi Gr.), 2009, planar, ring-laser. planar, coupled-gates. Vertical, VCSEL. photon-electron interactions In bulk or MQW semiconductors photonic-crystal gate are used. (FESTA, U. Tsukuba, AIST) K. Asakawa et al., J. of Phys. 2006 9 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  10. [2] Latest optical gates and memories [2] Optical-data-processing “gates and memories” <speed, energy, size> (2-2) All-optical gates (for practical signal-conversion, 2R/3R, demux, etc.) SMZ-DISC scheme, with non-linear cross-phase modulation XPM original-SMZ scheme, with XPM Gate, 2000 年 input input output output Gate, 2006 年 0.6 0.6 0.5 input output Signal (a.u.) Signal (a.u.) 0.4 0.4 Gate, 2009 年 0.3 0.2 0.2 0.1 input output 0.0 0.0 -50 0 +50 -50 0 +50 Delay (ps) Delay (ps) 168Gb/s, 2 pJ/bit , L ≅ 1mm S. Nakamura, Ueno, Tajima (NEC), wavelength-conversion 320Gb/s, 2.5 pJ/bit, L ≅ 1mm Y. Liu (Eindhoven), wavelength-conv. 640Gb/s T. Hirooka (Tohoku U. & NEC), Demux. T. Hirooka (Tohoku U. & NEC), Demux. 10 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  11. [2] Latest optical gates and memories [2] Optical-data-processing “gates and memories” <speed, energy, size> (2-2) All-optical gate (fundamental-research in our univ. UEC, Tokyo) Converter XOR AND 2R/3R etc Converter, XOR, AND, 2R/3R, etc. SMZ-DISC scheme (XPM) in our group Flip-Flop ( Eindhoven, Tsukuba ) Clock oscillator ( UEC ) Clock oscillator ( UEC ) Gate, 2008 年 Oscillator, 2005-2008 年 Distance in air, z (mm) -20 -10 0 +10 +20 Wavelength (nm) g ( ) 1.5 1552 1550 1548 1546 Gated waveform, 1540 nm 0 y (a. u.) 1 0 0 1 0 0 0 1 0 1 1 1 … Bm/nm) 1.0 -20 550 GHz 550 GHz Intensity Intensity (dB -40 0.5 -60 0 193.0 193.5 194.0 -75 -50 -25 0 +25 +50 +75 Optical frequency (THz) (160G-class) Time (ps) Δ 2ps/40GHz optical clock oscillator 200Gb/s, 3 pJ/bit , L ≅ 1mm Suzuki Nakamoto et al (CLEO2006 NANO2008) Suzuki, Nakamoto, et al. (CLEO2006, NANO2008) Sakaguchi, et al. (Opt. Comm. 2009) 11 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

  12. [2] Latest optical gates and memories 200-Gb/s gated waveforms, in the middle of our experimental studies in the middle of our experimental studies Jun Sakaguchi, et al., Opt. Comm. 2009. good !! good !! Distance, z (mm) b tt better (accelerated) y (a. u.) Intensity badly gated (too slow) Data-pattern-induced Time (ps) amplitude noise 12 Ultrafast Optical Logic Lab., UEC Ultrafast Optical Logic Lab., UEC

Recommend


More recommend