The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu3e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu3e February 2014 Dirk Wiedner INSTR14 25.02.2014 1
The Mu3e Signal • μ → eee rare in SM • Enhanced in: o Super-symmetry o Grand unified models o Left-right symmetric models o Extended Higgs sector o Large extra dimensions Rare decay (BR<10 -12 , SINDRUM) For BR O(10 -16 ) • >10 16 muon decays High decay rates O(10 9 muon/s) Dirk Wiedner INSTR14 25.02.2014 2
The Mu3e Background • Combinatorial background o μ + → e + νν & μ + → e + νν & e + e - o many possible combinations Good time and Good vertex resolution required Dirk Wiedner, Mu3e collaboration 7/17/2012 3
Combinatorics Dirk Wiedner, Mu3e collaboration 7/17/2012 4
The Mu3e Background • μ + → e + e - e + νν o Missing energy ( ν ) Good momentum resolution (R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004) Dirk Wiedner, Mu3e collaboration 7/17/2012 5
Challenges • High rates • Good timing resolution • Good vertex resolution • Excellent momentum resolution Extremely low material budget Dirk Wiedner, Mu3e collaboration 7/17/2012 6
Challenges • High rates: 10 9 μ /s • Good timing resolution: 100 ps • Good vertex resolution: ~100 μ m • Excellent momentum resolution: ~ 0.5 MeV/c 2 Extremely low material budget: 1x10 -3 X 0 (Si-Tracker Layer) HV-MAPS spectrometer 50 μ m thin sensors B ~1 T field + Timing detectors Dirk Wiedner, Mu3e collaboration 7/17/2012 7
Phased Experiment Phase Ia Target double hollow cone • Silicon pixel tracker • Muon beam O(10 7 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station • • 1 T B-field Tile detector • Dirk Wiedner INSTR14 25.02.2014 8
Phased Experiment Phase Ib Target double hollow cone • Silicon pixel tracker • Muon beam O(10 8 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station • • 1 T B-field Tile detector • Dirk Wiedner INSTR14 25.02.2014 9
Phased Experiment Phase II Ca. 2 m total length Target double hollow cone • Silicon pixel tracker • Muon beam O(10 9 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station x 2 • • 1 T B-field Tile detector x 2 • Dirk Wiedner INSTR14 25.02.2014 10
Ultra Light Support Structure for the Pixel Tracker Dirk Wiedner INSTR14 25.02.2014 11
Sandwich Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels <0.1% of X 0 o Support for all detectors Dirk Wiedner INSTR14 25.02.2014 12
Thinned Pixel Sensors • HV-MAPS* o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors *Previous talk: Tobias Weber “ High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector ” MuPix3 thinned to < 90μm Dirk Wiedner INSTR14 25.02.2014 13
Kapton ™ Flex Print • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Laser-cut flex print prototype Dirk Wiedner INSTR14 25.02.2014 14
Pixel Modules • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR14 25.02.2014 15
Overall Design • HV-MAPS o Thinned to 50 μm • Two halves for layers 1+2 o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • 6 modules in layer 3 • 7 modules in layer 4 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR14 25.02.2014 16
Inner Layers • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Vertex Prototype with 100 μ m Glass Dirk Wiedner INSTR14 25.02.2014 17
Outer Module • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μ m Glass Dirk Wiedner INSTR14 25.02.2014 18
Detector Frame • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μ m Glass Dirk Wiedner INSTR14 25.02.2014 19
Cooling Dirk Wiedner INSTR14 25.02.2014 20
Cooling Concept He • Liquid cooling o For readout-electronics • Gaseous He cooling Liquid Liquid o For Silicon tracker He Dirk Wiedner INSTR14 25.02.2014 21
Liquid Cooling • Beam pipe cooling o With cooling liquid o 5°C temperature o Significant flow possible o … using grooves in pipe • For electronics o FPGAs and o Power regulators o Mounted to cooling plates • Total power several kW Dirk Wiedner INSTR14 25.02.2014 22
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering He o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame He • V-shapes • Outer surface 150mW/cm 2 x 19080cm 2 = 2.86 KW Dirk Wiedner INSTR14 25.02.2014 23
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Temperatures between 20 ° C to 70 ° C ok. Dirk Wiedner INSTR14 25.02.2014 24
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 25
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 26
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering Kapton™ Frame o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame Cooling outlets V-shape • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 27
He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 28
Comparison Simulation He and Air He Air Dirk Wiedner INSTR14 25.02.2014 29
Tests • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum -Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K Dirk Wiedner INSTR14 25.02.2014 30
Dirk Wiedner INSTR14 25.02.2014 31
Tests • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum-Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K Dirk Wiedner INSTR14 25.02.2014 32
Test Results • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum -Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K No sign of vibration in air Dirk Wiedner INSTR14 25.02.2014 33
Comparison Simulation and Tests Dirk Wiedner INSTR14 25.02.2014 34
Simulation with V-shape cooling Configuration: • Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s o • In V-shape against main flux • Next to V-shape against main flux 31.42 mL/s per nozzle 6.786 L/s for 3. Layer Results: • ∆ T max ≈ 42°C o ∆ T max close to end of tube o T raises at last third of tube o → Extra Improvement using V-shapes as cooling channels Dirk Wiedner INSTR14 25.02.2014 35
Recommend
More recommend