cooling pipes heat management temperature humidity
play

Cooling pipes, heat management, temperature, humidity control of - PowerPoint PPT Presentation

Cooling pipes, heat management, temperature, humidity control of VXD Overview SVD PXD 2 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013 VXD Heat Sources SVD Origami 1748 APV25 chips ~ 0.4W / chip ~ 700W in total Hybrid


  1. Cooling pipes, heat management, temperature, humidity control of VXD

  2. Overview SVD PXD 2 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  3. VXD Heat Sources SVD Origami 1748 APV25 chips ~ 0.4W / chip ~ 700W in total Hybrid Hybrid PXD ""##BE#:F7#GH 18W per ladder &)CJ*. DC5 0QI ~ 360 W in total DHP (0.5W/chip) 9766 DCD (1.5W/chip) Switcher (1W total) Sensor (1W total) ; 3 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  4. VXD Heat Dissipation and CO 2 Cooling Circuits CO 2 Detector Half Layer Type Side Power [W] Circuit 1 1&2 endring bwd 90 up up 2 1&2 endring fwd 90 PXD PXD 3 1&2 endring bwd 90 down down 4 1&2 endring fwd 90 sum sum PXD 360 5 left 3-6 endring bwd 93 6 right 3-6 endring bwd 93 7 left 3-6 endring fwd 93 8 right 3-6 endring fwd 93 SVD SVD 9 left 4&5 origami bwd 68 10 right 4&5 origami bwd 68 11 left 6 origami bwd 96 12 right 6 origami bwd 96 sum SVD sum 700 plus parasitic heat load sum VXD sum 1060 from environment 4 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  5. VXD Cooling System Requirements Minimize material in acceptance region SVD requirements: - APV25 surface temperature @ ~ 0°C for SNR improvement - dissipated power ~ 700 W PXD requirements: - sensor temperature < 25°C (noise) - temperature of ASICs < 50°C (avoid electro-migration) - dissipated power ~ 360 W - goal: cooling block @ < -20°C Total power generated in VXD ~ 1kW plus: - additional heat loss through 15 m of transfer lines - parasitic heat load inside VXD volume from environment - => required cooling capacity of CO 2 system 2-3 kW (IBBelle design 3.3 kW) Dry Air Volume - dew point < -30 o C Outside of VXD: room temperature ( ~ 23°C) at the inner surface of CDC - needs to be kept stable for calibration - => need a thermal enclosure, well isolated 5 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  6. Compensation for Thermal Expansion/Contraction 6 carsten.niebuhr@desy.de BPAC VXD Cooling 11.09.2013

  7. Compensation for Thermal Expansion/Contraction Sliding Mechanism SLM in forward direction (M.Friedl) 6 carsten.niebuhr@desy.de BPAC VXD Cooling 11.09.2013

  8. Compensation for Thermal Expansion/Contraction Sliding Mechanism SLM in forward direction (M.Friedl) After installation forward end-flange is only attached to PXD support using gliding pin in plastic bushing 6 carsten.niebuhr@desy.de BPAC VXD Cooling 11.09.2013

  9. Cooling Environment Dry Volumes Docks +$41 !"##$%&'()'*"+&),&(%&&-)./0)"-1)/2/3 56)77 7 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  10. Dry Volumes Inside CDC RF=<ST# 45&4 <=(> >5?#@=(AB& C=5 „cold“ VXD dry volume DEF GH#897I!J up to VXD end flange GAK -= &)>#C(4)*& =C @=(AB& C=5 DEFJ @=(AB& C=5 L==B -&BK&54-A5& >5?#@=(AB&' GAK -= &)>#O4((# =C !F!J F5?)&'' 5&MA%5&B&)-N Dryness requirement: >&O K=%)- P#8Q7I!# dew point < -30°C 8 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  11. Connection of CO 2 Lines to Vacuum Isolation '-4)<45< F!G H=))&H-=5' ?'I4H& %)'%<& <=HJ#45&4B# &)<#=> ?@45AB#<5C#D=(EA& „normal“ atmosphere 9 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  12. CO 2 Lines inside VXD Volume 0E=># !?9#(%)&' -@ F@G)- H(@IJ /B= 9+#DB= 9 5&A># I@))&I-%@)' K@5 &)L%5@)F&)-4(# F@)%-@5%)* MD?;N# ;<=>#!?9#(%)&' -@ &)A#5%)*' /B= C+#DB= 9 10 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  13. CO 2 Lines inside VXD Volume 0E=># !?9#(%)&' -@ F@G)- H(@IJ /B= 9+#DB= 9 5&A># I@))&I-%@)' K@5 &)L%5@)F&)-4(# F@)%-@5%)* MD?;N# ;<=>#!?9#(%)&' -@ &)A#5%)*' /B= C+#DB= 9 Need CO 2 connectors close to the endflange - CO 2 pipes must be assembled prior to VXD installation 10 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  14. CO 2 Lines inside VXD Volume 0E=># !?9#(%)&' -@ F@G)- H(@IJ /B= 9+#DB= 9 5&A># I@))&I-%@)' K@5 &)L%5@)F&)-4(# F@)%-@5%)* MD?;N# ;<=>#!?9#(%)&' -@ &)A#5%)*' /B= C+#DB= 9 Need CO 2 connectors close to the endflange - CO 2 pipes must be assembled prior to VXD installation 10 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  15. Miniature Tube Fittings Design based on development for CMS pixel upgrade - modification for Belle II: add copper gasket Tests performed - 2 ( � 150 bar) √ - tightness test with CO 2 (110 bar, 48 h) √ - helium leak test at room temperature and in liquid nitrogen √ - repeatability ( � open/close cycles with same gasket) √ copper gasket 11 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  16. Transfer Line Routing to VXD <=4((# >?5@4-?5& 54A%?' B&C(4>& >D55?*4-&A C%C& EF <<#@4>??= C%C& G69#==H 12 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  17. Transfer Lines � 1 � , Baseline for CO 2 transfer line diameter � *`+ F56;8 � * =>F5J47=9> increased from 12 � mm to 18mm *)J4Y;8 - CERN uses � 18 mm lines for ATLAS-IBL F64A;8 A9W;8 @;4W; - want to maintain maximum compatibility � *(`b between ATLAS-IBL and Belle II VXD � *+ � *P V4<55ED#**)`*b(#EEc Disadvantages O57657D#bC)bP#EEc - bending radius might be problematic %>657D#)`/Pb#EEc - service space allocation is no longer sufficient ! ! if 18 � mm lines are used everywhere Mechanical bending tests performed at MPI - bending by � 40° (elastically) needs about 3 kg - quoted bending radius is � 45 mm - tested down to 20 mm - Xray shows no problems even for 20 mm bend 13 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  18. Transfer Lines � 1 � , Baseline for CO 2 transfer line diameter � *`+ F56;8 � * =>F5J47=9> increased from 12 � mm to 18mm *)J4Y;8 - CERN uses � 18 mm lines for ATLAS-IBL F64A;8 A9W;8 @;4W; - want to maintain maximum compatibility � *(`b between ATLAS-IBL and Belle II VXD � *+ � *P V4<55ED#**)`*b(#EEc Disadvantages O57657D#bC)bP#EEc MLI - bending radius might be problematic %>657D#)`/Pb#EEc - service space allocation is no longer sufficient CO 2 return ! ! if 18 � mm lines are used everywhere CO 2 inlet Mechanical bending tests performed at MPI - bending by � 40° (elastically) needs about 3 kg - quoted bending radius is � 45 mm - tested down to 20 mm - Xray shows no problems even for 20 mm bend 13 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  19. Transfer Lines � 1 � , Baseline for CO 2 transfer line diameter � *`+ F56;8 � * =>F5J47=9> increased from 12 � mm to 18mm *)J4Y;8 - CERN uses � 18 mm lines for ATLAS-IBL F64A;8 A9W;8 @;4W; - want to maintain maximum compatibility � *(`b between ATLAS-IBL and Belle II VXD � *+ � *P V4<55ED#**)`*b(#EEc Disadvantages O57657D#bC)bP#EEc MLI - bending radius might be problematic %>657D#)`/Pb#EEc - service space allocation is no longer sufficient CO 2 return ! ! if 18 � mm lines are used everywhere CO 2 inlet Mechanical bending tests performed at MPI - bending by � 40° (elastically) needs about 3 kg - quoted bending radius is � 45 mm - tested down to 20 mm - Xray shows no problems even for 20 mm bend 13 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  20. Test of ATLAS-IBL Prototype Transfer Lines M. Gutt-Mostowy Inlet Rigid Part Flexible Part Outlet CERN Cryo Lab � � (Tref-Tcs) vs Vacuum Level (Tout-Tin) vs Mass Flow Rate 0.9 0.8 0.8 0.75 0.7 0.6 0.7 0.5 dT [K] dT [K] 0.65 0.4 0.6 0.3 0.2 0.55 0.1 0.5 0 0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 2.50E-03 3.00E-03 3.50E-03 4.00E-03 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 Vacuum Level [mbar] Mass Flow Rate [g/s] Results according to expectations 14 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  21. Transfer Line Routing /EF DEF 5<=-%)* <> ?4@==A8%'<(4-&B -54)'>&5 (%)&' J!K8L J!K8C =+/*$&.20)$042$0662%/07-2$5+4$!9!$(4+,%$ Detailed solution 15 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  22. Transfer Line Routing !;9+#4%5 !;9+ 4%5 16 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  23. Alternative Design for Transfer Lines K. Gadow 17 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

  24. Simulation vs Measurement Cobra example: Node network for IBL Detector Mechanics Forum R 2 � Tube wall T Oxford, 20 June 2013 R 4 +R 3 � Insulation+HTC air environement R 2 � Tube wall R 1b � HTC CO2 R 1 � HTC CO2 Bart Verlaat T R 1 � HTC CO2 environement R 4 +R 3 � T CO2 T CO2 Insulation+HTC air T CO2 R 5 � Heat exchange T CO2 R 1a � HTC CO2 2. Bundled lines T environement Q 3 � Applied power 1. Concentric line R 4 � HTC air T R 2 +R 3 � TFoM environement R 2 � Tube wall R 1 � HTC CO2 R 1 � HTC CO2 R 4 +R 3 � HTC air T CO2 T CO2 4. Stave 23 3. Bare tube 18 carsten.niebuhr@desy.de SVD Review VXD Cooling 11.09.2013

Recommend


More recommend