two topics of scale invariant extensions of the sm
play

Two topics of scale invariant extensions of the SM Pyungwon Ko - PowerPoint PPT Presentation

Two topics of scale invariant extensions of the SM Pyungwon Ko (KIAS) SCGT 2014 Mini, KMI, Nagoya U March 5-7 (2014) 14 3 7 Contents Scale invariant extensions of the SM with strongly interacting hidden sector : EWSB


  1. Two topics of scale invariant extensions of the SM Pyungwon Ko (KIAS) SCGT 2014 Mini, KMI, Nagoya U March 5-7 (2014) 14 년 3 월 7 일 금요일

  2. Contents • Scale invariant extensions of the SM with strongly interacting hidden sector : EWSB and CDM from h-QCD (hidden sector TC) • Dilaton (radion in RS I scenario) couplings to the SM fields : SU(3) C x SU(2) L x U(1) Y vs. SU(3) C x U(1) em 14 년 3 월 7 일 금요일

  3. Based on • hep-ph/0709.1218 (PLB),0801.4284(IJMPA), 1012.0103(ICHEP),1103.2571(PRL), and a number of proceedings during 2007-2012 (with T.Hur, D.W.Jung, J.Y.Lee) • arXiv:1402.2115 [hep-ph] (with D.W.Jung) 14 년 3 월 7 일 금요일

  4. SM Chapter is being closed • SM has been tested at quantum level ! • EWPT favors light Higgs boson ! • CKM paradigm is working very well so far ! • LHC found a SM-Higgs like boson around 125 GeV ! • No smoking gun for new physics at LHC so far 14 년 3 월 7 일 금요일

  5. SM Lagrangian L MSM = − 1 1 Tr G µ ν G µ ν − 2 g 2 Tr W µ ν W µ ν 2 g 2 s − 1 θ 4 g ′ 2 B µ ν B µ ν + i G µ ν + M 2 16 π 2 Tr G µ ν ˜ Pl R + | D µ H | 2 + ¯ Q i i ̸ DQ i + ¯ U i i ̸ DU i + ¯ D i i ̸ DD i � 2 H † H − v 2 � E i i ̸ DE i − λ +¯ L i i ̸ DL i + ¯ 2 2 � � u Q i U j ˜ H + h ij d Q i D j H + h ij h ij − l L i E j H + c.c. . (1) Based on local gauge principle ! 3 14 년 3 월 7 일 금요일

  6. EWPT & CKM |O meas − O fit |/ σ meas Measurement Fit 0 1 2 3 Δα (5) Δα had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [ GeV ] m Z [ GeV ] 91.1875 ± 0.0021 91.1874 Γ Z [ GeV ] Γ Z [ GeV ] 2.4952 ± 0.0023 2.4957 σ 0 σ had [ nb ] 41.540 ± 0.037 41.477 R l R l 20.767 ± 0.025 20.744 A 0,l A fb 0.01714 ± 0.00095 0.01640 A l (P τ ) A l (P τ ) 0.1465 ± 0.0032 0.1479 R b R b 0.21629 ± 0.00066 0.21585 R c R c 0.1721 ± 0.0030 0.1722 A 0,b A fb 0.0992 ± 0.0016 0.1037 A 0,c A fb 0.0707 ± 0.0035 0.0741 A b A b 0.923 ± 0.020 0.935 A c A c 0.670 ± 0.027 0.668 A l (SLD) A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept (Q fb ) sin 2 θ eff 0.2324 ± 0.0012 0.2314 m W [ GeV ] m W [ GeV ] 80.392 ± 0.029 80.371 Γ W [ GeV ] Γ W [ GeV ] 2.147 ± 0.060 2.091 m t [ GeV ] m t [ GeV ] 171.4 ± 2.1 171.7 0 1 2 3 ε Almost Perfect ! 14 년 3 월 7 일 금요일

  7. Updates@LHCP Signal Strengths σ · Br µ ≡ σ SM · Br SM ATLAS CMS Decay Mode ( M H = 125 . 5 GeV) ( M H = 125 . 7 GeV) H → bb − 0 . 4 ± 1 . 0 1 . 15 ± 0 . 62 H → ττ 0 . 8 ± 0 . 7 1 . 10 ± 0 . 41 ⟨ µ ⟩ = 0 . 96 ± 0 . 12 H → γγ 1 . 6 ± 0 . 3 0 . 77 ± 0 . 27 H → WW ∗ 1 . 0 ± 0 . 3 0 . 68 ± 0 . 20 H → ZZ ∗ 1 . 5 ± 0 . 4 0 . 92 ± 0 . 28 1 . 30 ± 0 . 20 0 . 80 ± 0 . 14 Combined Higgs Physics A. Pich – LHCP 2013 9 14 년 3 월 7 일 금요일

  8. w/ S.H.Jung, S. Choi, JHEP (2013) NP to a singlet scalar arXiv:1307.3948 SM Mixing anlge NP to the SM Higgs Considered by the usual approaches based on effective Lagrangian 14 년 3 월 7 일 금요일

  9. SM Higgs ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h X v + 1 m f h h µ W − µ � v h ¯ 0 0 m 2 W W + m 2 Z Z µ Z µ � L h , int = ff � 2 b W v + b b f b Z 2 b W Z v v f ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h v + 1 h v + 1 F µ ν F µ ν + α s + α 0 0 16 π r g G a µ ν G aµ ν 8 π r γ b γ 2 b b g 2 b sm sm g γ v v ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h h + α 2 µ ν W − µ ν + α 2 W + Z µ ν Z µ ν 2 b dW v + b dW 0 2 b dZ v + b dZ 0 v v π π ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h h µ ν ^ + α 2 W − µ ν + α 2 2 g v + g 2 f v + g Z µ ν g W + Z µ ν b dW b dW 0 b dZ b dZ 0 v v π π ( ◆ 2 ) ✓ h h + α F µ ν Z µ ν 2 b Z γ v + b Z γ 0 (2.1) v π Singlet Scalar S ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s X v + 1 m f s s v s ¯ 0 0 m 2 W W + µ W − µ − m 2 Z Z µ Z µ − L s , int = 2 c W v + c c f ff − c Z 2 c W Z v v f ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s v + 1 v + 1 s s F µ ν F µ ν + α s + α 0 0 16 π r g G a µ ν G aµ ν (2.10) 8 π r γ c γ 2 c c g 2 c g sm sm γ v v ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s s s µ ν W − µ ν + α 2 + α 2 Z µ ν Z µ ν W + 2 c dW v + c dW 0 2 c dZ v + c dZ 0 v v π π ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s s s µ ν ^ + α 2 W − µ ν + α 2 Z µ ν g W + Z µ ν 2 g v + g 2 f v + g c dW c dW 0 c dZ c dZ 0 v v π π ⇢ ⌘ 2 � ⇣ s s + α F µ ν Z µ ν 2 c Z γ v + c Z γ 0 − L nonSM (2.11) v π 14 년 3 월 7 일 금요일

  10. Mixing with a singlet scalar H 1 = h cos α � s sin α H 2 = h sin α + s cos α M ( H 1 F ) = M ( hF ) SM × ( b F cos α − c F sin α ) ≡ κ 1 F M ( hF ) SM M ( H 2 F ) = M ( hF ) SM × ( − b F sin α + c F cos α ) ≡ κ 2 F M ( hF ) SM Model Nonzero c ’s Pure Singlet Extension c h 2 Hidden Sector DM c χ Dilaton c h 2 , c g , c W , c Z , c γ Vectorlike Quarks c g , c γ Vectorlike Leptons c γ New Charged Vector bosons c γ Other c’s are all zeros ! 14 년 3 월 7 일 금요일

  11. SM gives the best fit both CMS ATLAS χ 2 / ν = 12 . 01 / 10 = 1 . 20 SM 2 . 33 / 5 = 0 . 466 9 . 69 / 5 = 1 . 94 ( ∆ b γ ) (0.090) (-0.117) (0.28) 11.19/9=1.24 1.71/4=0.428 4.99/4=1.25 ( ∆ b g , ∆ b γ ) (-0.018, 0.107) (-0.078, -0.048) (0.11, 0.17) 11.13/8 = 1.39 0.859/3 = 0.286 4.14/3 = 1.38 ( b V , b f ) ( 1 . 031 , 0 . 962 ) ( 0 . 898 , 1 . 021 ) ( 1 . 345 , 0 . 808 ) 11 . 74 / 8 = 1 . 47 0.808/3=0.27 4.52/3=1.51 ( b V ≤ 1 , b u , b d ) ( 1 . 0 , 0 . 969 , 0 . 938 ) 2HDMs (MSSM) 11 . 86 / 7 = 1 . 69 ( ∆ b g , ∆ b γ , b V , b f ) ( 0 . 041 , 0 . 117 , 0 . 941 , 0 . 961 ) 11.07/6 = 1.85 Table 5 . Best-fit results using b i only from both CMS and ATLAS data as well as individual. Errors are shown in text. 14 년 3 월 7 일 금요일

  12. SM gives the best fit � 2 / ⌫ Models Best-fit results SM 12 . 01 / 10 = 1 . 20 universal modification  2 (ˆ univ ) (1 . 012) 11 . 96 / 9 = 1 . 33 ( BR nonSM ) ≤ 18 . 8% at 95%CL (cos ↵ ) ≥ 0 . 904 at 95%CL VL lepton, W 0 , S 0 ( c α , c γ ) (0.98, -0.55) 11 . 1 / 8 = 1 . 39 VL quark ( c α , c g , c γ ) (0.947, -0.128, -0.313) 11 . 1 / 7 = 1 . 58 ( c α , c γ , Br nonSM ) BR nonSM ≤ 24% at 95%CL 11 . 1 / 8 = 1 . 39 ( c α , c g , c γ , Br nonSM ) BR nonSM ≤ 39% at 95%CL 11 . 1 / 7 = 1 . 58 singlet mixed-in ˆ   2  2  2 (ˆ g , ˆ γ , ˆ mix ) (1.03, 1.15, 0.942) 11 . 1 / 7 = 1 . 58 singlet mixed-in theory (ˆ c g , ˆ c γ , ˆ c α ) (-0.176, -0.432, 0.971) 11 . 1 / 7 = 1 . 58 Table 7 . Summary of best-fit results with scalar mixing. If BR nonSM is included in fit, no unique solution is found, and its upper bound at 95%CL is presented. Only central values of best-fit are shown, and errors can be found in text. 14 년 3 월 7 일 금요일

  13. 14 년 3 월 7 일 금요일

  14. Aspen this March 14 년 3 월 7 일 금요일

  15. • Dark & visible matter and dark energy, neutrinos observation expectation v ∝ r − 1 / 2 Strong gravitational lensing in Abell 1689 Jan Oort ( 1932 ) , Fritz Zwicky ( 1933 ) Bullet cluster Heights of peaks " ⇒ Ω b , Ω DM Ω b ' 0 . 048 Ω DM ' 0 . 259 Ω Λ ' 0 . 691 (Planck+WP+highL+BAO) ! 8 14 년 3 월 7 일 금요일

  16. Inflation models in light of Planck2013 data V ∝ φ 4 [Planck2013 results] ! 9 14 년 3 월 7 일 금요일

  17. Only Higgs (~SM) & Nothing Else So Far 14 년 3 월 7 일 금요일

  18. Motivations for BSM • Neutrino masses and mixings Leptogenesis • Baryogenesis • Inflation (inflaton) Starobinsky & Higgs Inflations • Nonbaryonic DM Many candidates • Origin of EWSB and Cosmological Const ? Can we attack these problems ? 14 년 3 월 7 일 금요일

  19. Building Blocks of SM • Lorentz/Poincare Symmetry ! • Local Gauge Symmetry : Gauge Group + Matter Representations from Experiments ! • Higgs mechanism for masses of weak gauge bosons and SM chiral fermions ! • These principles lead to unsurpassed success of the SM in particle physics 14 년 3 월 7 일 금요일

  20. Lessons for Model Building • Specify local gauge sym, matter contents and their representations under local gauge group ! • Write down all the operators upto dim-4 ! • Check anomaly cancellation ! • Consider accidental global symmetries ! • Look for nonrenormalizable operators that break/conserve the accidental symmetries of the model 14 년 3 월 7 일 금요일

  21. • If there are spin-1 particles, extra care should be paid : need an agency which provides mass to the spin-1 object ! • Check if you can write Yukawa couplings to the observed fermion ! • One may have to introduce additional Higgs doublets with new gauge interaction if you consider new chiral gauge symmetry (Ko, Omura, Yu on chiral U(1)’ model for top FB asymmetry) ! • Impose various constraints and study phenomenology 14 년 3 월 7 일 금요일

  22. (3,2,1) or SU(3) c XU(1) em ? • Well below the EW sym breaking scale, it may be fine to impose SU(3)c X U(1)em ! • At EW scale, better to impose (3,2,1) which gives better description in general after all ! • Majorana neutrino mass is a good example ! • For example, in the Higgs + dilaton (radion) system, and you get different results (work in preparation with D.W.Jung) ! • Singlet mixing with SM Higgs 14 년 3 월 7 일 금요일

  23. Digression on Higgs- dilaton system arXiv:1402.2115 [hep-ph] 14 년 3 월 7 일 금요일

Recommend


More recommend