split susy at lhc and a 100 tev collider
play

Split SUSY at LHC and a 100 TeV collider Thomas Grgoire With - PowerPoint PPT Presentation

Split SUSY at LHC and a 100 TeV collider Thomas Grgoire With Hugues Beauchesne and 1503.03099 Kevin Earl GGI - 2015 Status of Supersymmetry gluino searches stop searches t & 700GeV m g & 1 . 4TeV m What does it mean for


  1. Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and 1503.03099 Kevin Earl GGI - 2015

  2. Status of Supersymmetry

  3. gluino searches stop searches t & 700GeV m ˜ g & 1 . 4TeV m ˜

  4. What does it mean for naturalness? Papucci, Ruderman,Weiler ‘natural SUSY’ (stop,gluino,higgsino) ‘11 stop ✓ Λ ◆ h = − 3 ⇣ u 3 + | A t | 2 ⌘ δ m 2 8 π 2 y 2 m 2 Q 3 + m 2 log t TeV ◆ − 1 / 2 ✓ ∆ − 1 q m 2 t 1 + m 2 t 2 . 600GeV ˜ ˜ 20% gluino ✓ Λ ◆ h = − 2 ⇣ α s ⌘ 3 log 2 δ m 2 π 2 y 2 M 2 t π TeV ◆ − 1 / 2 ✓ ∆ − 1 M 3 . 900 GeV sin β 20%

  5. 125 Gev Higgs : prefers heavy stops ! m 2 h = 3 G F ˜ δ m 2 2 π 2 m 4 t t log m 2 √ t ~ 1-10 TeV stop depending on A-term More complete models generally yield %-level fine-tuning CMSSM parameter space with tan b = 3, A 0 = 0 2.5 experimentally 2.0 a l excluded l o w e d excluded 1.5 Strumia ‘11 vev = 0 m 0 ê m CMSSM excluded 1.0 by LHC 0.5 excluded vev = • 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 M 1 ê 2 ê m

  6. NMSSM, split generation, low-scale mediation, Dirac gaugino, and R-parity breaking are generically tuned. Arvanitaki, Baryakhtar, Huang, Tiburg, Villadoro ‘13 Better model building might save the day Dimopoulos, March-Russell Scherk-Schwartz SUSY breaking ‘14 LeComte, Martin ‘11 Dimopoulos, March-Russell, Compressed spectrum Scoville ‘14 Fan, Reece,Ruderman ‘11 Stealth supersymmetry Chacko, Goh, Harnik ‘05 Twin Higgs Craig, Howe ‘13

  7. Dirac gauginos In the MSSM gauginos are Majorana M λλ F X θ 2 Z d 2 θ XW α W α Can be Dirac if new superfields are added W 1 α , W 2 α , W 3 S, T, G N=2 supersymmetry α extra-dimension M D λ Ψ

  8. Supersoft SUSY breaking Fox, Nelson, Weiner ’02 D 0 θ α D-term breaking Z d 2 θ W 0 α W α i Φ i Dirac gauginos do not feed into scalar masses through renormalization ✓ δ 2 m 2 = C i ( r ) α i m 2 ◆ i log m 2 π i

  9. They can be naturally heavier than scalars LHC will have a harder time seeing the gluino... M. Heikinheimo, M. Kellerstein, V. Sanz ’12 Kribs, Martin ’12 ...and squarks ˜ u u ˜ g ˜ u u

  10. Squark production é q é * L s H q 1 M g é = 2 TeV s @ pb D 10 - 1 Majorana Gluino Dirac Gluino 10 - 2 500 600 700 800 900 1000 1100 1200 é @ GeV D m q Frugiuele, T.G., Kumar, Ponton

  11. R-symmetry With Dirac gaugino: possible to impose an U(1) R-symmetry M D λ Ψ Kribs,Poppitz,Weiner ’02 • Bounds from FCNC are weaker: off diagonal m ij R [ Q, U c , D c , L, E c ] = 1 R [ H u , H d ] = 0 µH u H d

  12. Higgs mass Tree-level: Reduced quartic, usual of Dirac gauginos Z D 2 = M 2 T a + H † d 2 θ W 0 u σ a H u + ... α W α i Φ i h h T When the scalar is integrated out: T h h λ → 0 Higgs quartic If the mass of is set by and T λ T = 0 M 2

  13. No help (at tree-level) from λ T H u TR d + λ S H u SR d don’t get a vev (In the limit of exact R-symmetry) But do help in models without an R-symmetry Benakli, Goodsell, Staub 1211.0552

  14. Loop-level Usual stop correction (but A-terms are 0) ˜ h h t t λ 2 λ 2 t h h Similar loop from the triplet h T h λ 2 λ 2 T T h h T

  15. ! t log m 2 T log m 2 1 ˜ 5 λ 4 + 3 λ 4 T t V CW ∼ M 2 m 2 16 π 2 t 2 Very sensitive to λ T ….but so are electroweak precision measurements

  16. allowed by EWPT 1 2 - M D 2 M GeV 2 , m= 300 GeV I - m adj B T = B S = 3 2000 160 160 140 1800 120 100 1600 t = 300GeV 80 m ˜ 1400 m adj H GeV L 1200 60 1000 m ˜ t = m adj 80 800 600 50 400 600 800 1000 1200 1400 M D H GeV L Bertuzzo, Frugiuele, T.G., Ponton

  17. Arkani-Hamed, Dimopoulos ‘05 Split Supersymmetry Naturalness might not be a good guide SUSY might still be relevant • Dark matter • Gauge coupling unification • ‘UV’ reasons Gauginos and scalars might not be at the same mass scale natural in for example anomaly mediation

  18. Prediction for the Higgs mass The Higgs quartic coupling is predicted at a high scale: λ ( m scalar ) = 1 4( g 2 + g 0 2 ) cos 2 β tree-level MSSM SUSY Split SUSY thresholds thresholds running Bagnaschi, Giudice,Slavich,Strumia ‘14

  19. Split - SUSY 160 Bagnaschi, tan b = 50 Giudice,Slavich,Strumia tan b = 4 ‘14 tan b = 2 150 tan b = 1 Higgs mass in GeV 140 130 exp Observed M h 120 M 1 = M 2 = M 3 = m = 1 TeV 110 10 4 10 6 10 8 10 10 10 12 10 14 10 16 10 18 Degenerate SUSY scale in GeV

  20. Arvanitaki, Craig, Dimopoulos, Villadoro ‘12 Mini-split in anomaly mediation scalar masses are generated by gravity mediation d 4 θ X † XQ † Q Z m 2 = m 2 3 / 2 M 2 pl but the gaugino masses are generated by AMSB d 2 θ XW α W α Z b i 16 π 2 g 2 M i = i m 3 / 2 M pl

  21. -term generated through Giudice-Masiero µ conformal compensator Z d 4 θφ † φ H u H d µ ∼ B µ µ ∼ m 3 / 2 Heavy Higgsino

  22. Similar spectrum could also arise in gauge mediation Arvanitaki, Craig, Dimopoulos, Villadoro ‘12 Buican, Meade, Seiberg, Shih ‘09 � φ 1 ¯ φ 1 + φ 2 ¯ � W = M R φ 2 + X φ 1 φ 2 g 2 F 3 g 2 M i i 16 π 2 Λ M i ∼ = M 3 16 π 2 M R R We take the scalars at ∼ Λ

  23. Higgsino Gaugino spectrum threshold (deflected AMSB)  � 1 + C µ M ˜ B = M 1 11 + · · · W = M 2 [1 + C µ + · · · ] M ˜ g = M 3 [1 + · · · ] M ˜ A sin 2 β M i = β i m 2 A − µ 2 ln m 2 µ A m 3 / 2 C µ = m 2 g i µ 2 m 3 / 2

  24. AMSB Gaugino spectrum Beauchesne, Earl, T.G. ‘15 1600 � � GeV � M G � 1200 � , G � , W Gaugino masses M B 800 M B � 400 M W � 0 � 5 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 C Μ Parametrize deflection from AMSB spectrum

  25. Similar expressions for gauge mediation 1 + 3 C 0  � µ M ˜ B = M 1 + · · · 5 ⇥ ⇤ 1 + C 0 M ˜ W = M 2 µ + · · · g = M 3 [1 + · · · ] M ˜ A sin 2 β g 2 m 2 A − µ 2 ln m 2 µ = µ i A 16 π 2 Λ M i = C 0 m 2 µ 2 Λ

  26. Similar expressions for gauge mediation 2000 � � GeV � M G 1600 � � , G � , W 1200 Gaugino masses M B M W � 800 M B � 400 0 � 5 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 C' Μ

  27. Assume that gluino decay to 3rd generation quarks 1. 0 t t é Æ c 1 g B = 0 GeV 0 t t é Æ c 2 m ˜ g 0 b b é Æ c 1 0.8 g 0 b b é Æ c 2 g + b t + h.c. é Æ c 1 g G = 1 . 5 TeV m ˜ 0.6 BR 0.4 0.2 0. 0 200 400 600 800 1000 1200 1400 é @ GeV D M W

  28. Electroweakino decays ˜ W 0 → ˜ Bh bino LSP W + → W + ˜ ˜ B B → ˜ ˜ W 0 h wino LSP W + → W 0 + soft ˜

  29. Parameter space parameters of the model: tan β µ m scalar m 3 / 2 choose: m scalar ∼ m 3 / 2 set to reproduce the Higgs mass tan β results in term of C µ and m 3 / 2

  30. Recasting LHC bounds Gaugino spectrum and branching ratios are obtained as a function of and . C µ m 3 / 2 we simulate the signal using MadGraph- Pythia-Delphes and recast LHC searches ATLAS multi-leptons+b-jets ATLAS 0-1 lepton+b-jets CMS high jets multiplicity CMS 2 OS leptons+jets

  31. AMSB contours M ˜ W color breaking vacuum Beauchesne, Earl, T.G. ‘15

  32. Gauge mediation

  33. LHC 14 prospects looked at 2 sets of cuts same-sign dilepton High missing energy cohen et al. 1311.6480 CMS-PAS-FTR-13-014 • SSDL • 1 lepton • 2 b-jets or more • 6 jets or more • 6 jets or more • 1 b-jet • H T > 700GeV • H T > 500GeV • E miss > 250GeV T + P lep • E miss > 450GeV T T 4 signal 8 signal regions regions

  34. AMSB (discovery) at LHC 14 contours M ˜ W 3000 fb 300 fb

  35. GMSB (discovery) at LHC 14 contours M ˜ B

  36. Prospect for a 100 TeV collider High missing energy same-sign dilepton adapted from Jung, Wells ’13 cohen et al. 1311.6480 • SSDL • 2 jets with p T > 0 . 1 M e ff • 3 b-jets or more • no lepton • 7 jets or more • E miss > 0 . 2 M e ff T • • H T > 3000GeV M e ff > 15TeV • • 3 or more b-jest E miss > 800GeV T 8 signal 5 signal regions regions

  37. 3 ab − 1 AMSB at a 100 TeV collider ( )

  38. GMSB at a 100 TeV collider

  39. Dark matter If the LSP is a wino: need M ˜ W ∼ 2 . 7TeV 100 TeV collider

  40. If the LSP is a bino: need dilution If the LSP is a bino-wino mixture ( ): | C µ | ∼ 4 M ~ several 100 GeV Arkani- well-tempered neutralino Hamed,Delgado,Giudice

  41. Gauge couplings unification modified by heavy Higgsino, but seems to work 50 - 1 a 1 - 1 a 2 - 1 40 a 3 a - 1 30 20 10 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 6 10 7 10 8 H GeV L Arkani-Hamed, Gupta, Kaplan, Weiner, Zowarski

Recommend


More recommend