Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and 1503.03099 Kevin Earl GGI - 2015
Status of Supersymmetry
gluino searches stop searches t & 700GeV m ˜ g & 1 . 4TeV m ˜
What does it mean for naturalness? Papucci, Ruderman,Weiler ‘natural SUSY’ (stop,gluino,higgsino) ‘11 stop ✓ Λ ◆ h = − 3 ⇣ u 3 + | A t | 2 ⌘ δ m 2 8 π 2 y 2 m 2 Q 3 + m 2 log t TeV ◆ − 1 / 2 ✓ ∆ − 1 q m 2 t 1 + m 2 t 2 . 600GeV ˜ ˜ 20% gluino ✓ Λ ◆ h = − 2 ⇣ α s ⌘ 3 log 2 δ m 2 π 2 y 2 M 2 t π TeV ◆ − 1 / 2 ✓ ∆ − 1 M 3 . 900 GeV sin β 20%
125 Gev Higgs : prefers heavy stops ! m 2 h = 3 G F ˜ δ m 2 2 π 2 m 4 t t log m 2 √ t ~ 1-10 TeV stop depending on A-term More complete models generally yield %-level fine-tuning CMSSM parameter space with tan b = 3, A 0 = 0 2.5 experimentally 2.0 a l excluded l o w e d excluded 1.5 Strumia ‘11 vev = 0 m 0 ê m CMSSM excluded 1.0 by LHC 0.5 excluded vev = • 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 M 1 ê 2 ê m
NMSSM, split generation, low-scale mediation, Dirac gaugino, and R-parity breaking are generically tuned. Arvanitaki, Baryakhtar, Huang, Tiburg, Villadoro ‘13 Better model building might save the day Dimopoulos, March-Russell Scherk-Schwartz SUSY breaking ‘14 LeComte, Martin ‘11 Dimopoulos, March-Russell, Compressed spectrum Scoville ‘14 Fan, Reece,Ruderman ‘11 Stealth supersymmetry Chacko, Goh, Harnik ‘05 Twin Higgs Craig, Howe ‘13
Dirac gauginos In the MSSM gauginos are Majorana M λλ F X θ 2 Z d 2 θ XW α W α Can be Dirac if new superfields are added W 1 α , W 2 α , W 3 S, T, G N=2 supersymmetry α extra-dimension M D λ Ψ
Supersoft SUSY breaking Fox, Nelson, Weiner ’02 D 0 θ α D-term breaking Z d 2 θ W 0 α W α i Φ i Dirac gauginos do not feed into scalar masses through renormalization ✓ δ 2 m 2 = C i ( r ) α i m 2 ◆ i log m 2 π i
They can be naturally heavier than scalars LHC will have a harder time seeing the gluino... M. Heikinheimo, M. Kellerstein, V. Sanz ’12 Kribs, Martin ’12 ...and squarks ˜ u u ˜ g ˜ u u
Squark production é q é * L s H q 1 M g é = 2 TeV s @ pb D 10 - 1 Majorana Gluino Dirac Gluino 10 - 2 500 600 700 800 900 1000 1100 1200 é @ GeV D m q Frugiuele, T.G., Kumar, Ponton
R-symmetry With Dirac gaugino: possible to impose an U(1) R-symmetry M D λ Ψ Kribs,Poppitz,Weiner ’02 • Bounds from FCNC are weaker: off diagonal m ij R [ Q, U c , D c , L, E c ] = 1 R [ H u , H d ] = 0 µH u H d
Higgs mass Tree-level: Reduced quartic, usual of Dirac gauginos Z D 2 = M 2 T a + H † d 2 θ W 0 u σ a H u + ... α W α i Φ i h h T When the scalar is integrated out: T h h λ → 0 Higgs quartic If the mass of is set by and T λ T = 0 M 2
No help (at tree-level) from λ T H u TR d + λ S H u SR d don’t get a vev (In the limit of exact R-symmetry) But do help in models without an R-symmetry Benakli, Goodsell, Staub 1211.0552
Loop-level Usual stop correction (but A-terms are 0) ˜ h h t t λ 2 λ 2 t h h Similar loop from the triplet h T h λ 2 λ 2 T T h h T
! t log m 2 T log m 2 1 ˜ 5 λ 4 + 3 λ 4 T t V CW ∼ M 2 m 2 16 π 2 t 2 Very sensitive to λ T ….but so are electroweak precision measurements
allowed by EWPT 1 2 - M D 2 M GeV 2 , m= 300 GeV I - m adj B T = B S = 3 2000 160 160 140 1800 120 100 1600 t = 300GeV 80 m ˜ 1400 m adj H GeV L 1200 60 1000 m ˜ t = m adj 80 800 600 50 400 600 800 1000 1200 1400 M D H GeV L Bertuzzo, Frugiuele, T.G., Ponton
Arkani-Hamed, Dimopoulos ‘05 Split Supersymmetry Naturalness might not be a good guide SUSY might still be relevant • Dark matter • Gauge coupling unification • ‘UV’ reasons Gauginos and scalars might not be at the same mass scale natural in for example anomaly mediation
Prediction for the Higgs mass The Higgs quartic coupling is predicted at a high scale: λ ( m scalar ) = 1 4( g 2 + g 0 2 ) cos 2 β tree-level MSSM SUSY Split SUSY thresholds thresholds running Bagnaschi, Giudice,Slavich,Strumia ‘14
Split - SUSY 160 Bagnaschi, tan b = 50 Giudice,Slavich,Strumia tan b = 4 ‘14 tan b = 2 150 tan b = 1 Higgs mass in GeV 140 130 exp Observed M h 120 M 1 = M 2 = M 3 = m = 1 TeV 110 10 4 10 6 10 8 10 10 10 12 10 14 10 16 10 18 Degenerate SUSY scale in GeV
Arvanitaki, Craig, Dimopoulos, Villadoro ‘12 Mini-split in anomaly mediation scalar masses are generated by gravity mediation d 4 θ X † XQ † Q Z m 2 = m 2 3 / 2 M 2 pl but the gaugino masses are generated by AMSB d 2 θ XW α W α Z b i 16 π 2 g 2 M i = i m 3 / 2 M pl
-term generated through Giudice-Masiero µ conformal compensator Z d 4 θφ † φ H u H d µ ∼ B µ µ ∼ m 3 / 2 Heavy Higgsino
Similar spectrum could also arise in gauge mediation Arvanitaki, Craig, Dimopoulos, Villadoro ‘12 Buican, Meade, Seiberg, Shih ‘09 � φ 1 ¯ φ 1 + φ 2 ¯ � W = M R φ 2 + X φ 1 φ 2 g 2 F 3 g 2 M i i 16 π 2 Λ M i ∼ = M 3 16 π 2 M R R We take the scalars at ∼ Λ
Higgsino Gaugino spectrum threshold (deflected AMSB) � 1 + C µ M ˜ B = M 1 11 + · · · W = M 2 [1 + C µ + · · · ] M ˜ g = M 3 [1 + · · · ] M ˜ A sin 2 β M i = β i m 2 A − µ 2 ln m 2 µ A m 3 / 2 C µ = m 2 g i µ 2 m 3 / 2
AMSB Gaugino spectrum Beauchesne, Earl, T.G. ‘15 1600 � � GeV � M G � 1200 � , G � , W Gaugino masses M B 800 M B � 400 M W � 0 � 5 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 C Μ Parametrize deflection from AMSB spectrum
Similar expressions for gauge mediation 1 + 3 C 0 � µ M ˜ B = M 1 + · · · 5 ⇥ ⇤ 1 + C 0 M ˜ W = M 2 µ + · · · g = M 3 [1 + · · · ] M ˜ A sin 2 β g 2 m 2 A − µ 2 ln m 2 µ = µ i A 16 π 2 Λ M i = C 0 m 2 µ 2 Λ
Similar expressions for gauge mediation 2000 � � GeV � M G 1600 � � , G � , W 1200 Gaugino masses M B M W � 800 M B � 400 0 � 5 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 C' Μ
Assume that gluino decay to 3rd generation quarks 1. 0 t t é Æ c 1 g B = 0 GeV 0 t t é Æ c 2 m ˜ g 0 b b é Æ c 1 0.8 g 0 b b é Æ c 2 g + b t + h.c. é Æ c 1 g G = 1 . 5 TeV m ˜ 0.6 BR 0.4 0.2 0. 0 200 400 600 800 1000 1200 1400 é @ GeV D M W
Electroweakino decays ˜ W 0 → ˜ Bh bino LSP W + → W + ˜ ˜ B B → ˜ ˜ W 0 h wino LSP W + → W 0 + soft ˜
Parameter space parameters of the model: tan β µ m scalar m 3 / 2 choose: m scalar ∼ m 3 / 2 set to reproduce the Higgs mass tan β results in term of C µ and m 3 / 2
Recasting LHC bounds Gaugino spectrum and branching ratios are obtained as a function of and . C µ m 3 / 2 we simulate the signal using MadGraph- Pythia-Delphes and recast LHC searches ATLAS multi-leptons+b-jets ATLAS 0-1 lepton+b-jets CMS high jets multiplicity CMS 2 OS leptons+jets
AMSB contours M ˜ W color breaking vacuum Beauchesne, Earl, T.G. ‘15
Gauge mediation
LHC 14 prospects looked at 2 sets of cuts same-sign dilepton High missing energy cohen et al. 1311.6480 CMS-PAS-FTR-13-014 • SSDL • 1 lepton • 2 b-jets or more • 6 jets or more • 6 jets or more • 1 b-jet • H T > 700GeV • H T > 500GeV • E miss > 250GeV T + P lep • E miss > 450GeV T T 4 signal 8 signal regions regions
AMSB (discovery) at LHC 14 contours M ˜ W 3000 fb 300 fb
GMSB (discovery) at LHC 14 contours M ˜ B
Prospect for a 100 TeV collider High missing energy same-sign dilepton adapted from Jung, Wells ’13 cohen et al. 1311.6480 • SSDL • 2 jets with p T > 0 . 1 M e ff • 3 b-jets or more • no lepton • 7 jets or more • E miss > 0 . 2 M e ff T • • H T > 3000GeV M e ff > 15TeV • • 3 or more b-jest E miss > 800GeV T 8 signal 5 signal regions regions
3 ab − 1 AMSB at a 100 TeV collider ( )
GMSB at a 100 TeV collider
Dark matter If the LSP is a wino: need M ˜ W ∼ 2 . 7TeV 100 TeV collider
If the LSP is a bino: need dilution If the LSP is a bino-wino mixture ( ): | C µ | ∼ 4 M ~ several 100 GeV Arkani- well-tempered neutralino Hamed,Delgado,Giudice
Gauge couplings unification modified by heavy Higgsino, but seems to work 50 - 1 a 1 - 1 a 2 - 1 40 a 3 a - 1 30 20 10 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 6 10 7 10 8 H GeV L Arkani-Hamed, Gupta, Kaplan, Weiner, Zowarski
Recommend
More recommend