two parameter deformation of multivariate hook product
play

Two-parameter Deformation of Multivariate Hook Product Formulae - PowerPoint PPT Presentation

Two-parameter Deformation of Multivariate Hook Product Formulae Soichi OKADA (Nagoya University) Two-dimensional Lattice Models IHP, Oct. 9, 2009 Hook Product Formulae FrameRobinsonThrall n ! f = v D ( ) h ( v )


  1. Two-parameter Deformation of Multivariate Hook Product Formulae Soichi OKADA (Nagoya University) Two-dimensional Lattice Models IHP, Oct. 9, 2009

  2. Hook Product Formulae • Frame–Robinson–Thrall n ! f λ = � v ∈ D ( λ ) h λ ( v ) • Stanley (univariate z ) 1 z | π | = � v ∈ D ( λ ) (1 − z h λ ( v ) ) � π : reverse plane partition of shape λ • Gansner (multivariate z = ( · · · , z − 1 , z 0 , z 1 , · · · ) ) 1 z π = � � v ∈ D ( λ ) (1 − z [ H D ( λ ) ( v )]) π : reverse plane partition of shape λ

  3. Goal : ( q, t ) -deformations of multivariate hook product formulae 1 → ( tx ; q ) ∞ 1 − x − , ( x ; q ) ∞ i ≥ 0 (1 − aq i ) . where ( a ; q ) ∞ = � Our formulae look like ( t z [ H P ( v )]; q ) ∞ W P ( σ ; q, t ) z σ = � � . ( z [ H P ( v )]; q ) ∞ v ∈ P σ ∈A ( P ) This talk is based on arXiv:0909.0086.

  4. Plan 1. Symmetric function approach to Gansner’s formula (an approach by Okounkov–Reshetikhin) 2. ( q, t ) -deformation of Gansner’s formula (for ordinary or shifted reverse plane partitions) 3. ( q, t ) -deformation of Peterson–Proctor’s formula (for P -partitions on d -complete poset P )

  5. Symmetric Function Approach to Gansner’s Formula

  6. Diagrams and Shifted Diagrams For a partition λ , we denote its diagram by D ( λ ) : D ( λ ) = { ( i, j ) ∈ P 2 : 1 ≤ j ≤ λ i } . For a strict partition µ , we denote its shifted diagram by S ( µ ) : S ( µ ) = { ( i, j ) ∈ P 2 : i ≤ j ≤ µ i + i − 1 } . Example : D ((4 , 3 , 1)) S ((4 , 3 , 1))

  7. Reverse Plane Partitions A (weak) reverse plane partition of shape λ is an array of non-negative integers π 1 , 1 π 1 , 2 · · · · · · π 1 ,λ 1 · · · π 2 , 1 π 2 , 2 π 2 ,λ 2 π = . . . . . . π r, 1 π r, 2 · · · π r,λ r → N ) satisfying (i.e., a map D ( λ ) − π i,j ≤ π i,j +1 , π i,j ≤ π i +1 ,j . Let A ( D ( λ )) be the set of reverse plane partitions of shape λ : A ( D ( λ )) = { π : reverse plane partition of shape λ } .

  8. A shifted (weak) reverse plane partition of shifted shape µ is an array of non-negative integers · · · · · · σ 1 , 1 σ 1 , 2 σ 1 , 3 σ 1 ,µ 1 σ 2 , 2 σ 2 , 3 · · · σ 2 ,µ 2 +1 σ = ... σ r,r · · · σ r,µ r + r − 1 → N ) satisfying (i.e., a map S ( µ ) − σ i,j ≤ σ i,j +1 , σ i,j ≤ σ i +1 ,j . Let A ( S ( µ )) be the set of shifted reverse plane partitions of shape µ : A ( S ( µ )) = { σ : shifted reverse plane partition of shape µ } .

  9. Trace Generating Function Given an ordinary or shifted reverse plane partition π = ( π i,j ) , we define its k -th trace t k ( π ) by � t k ( π ) = π i,i + k . i We write z π i,j z π = z t k ( π ) � � = j − i , k i,j k and consider trace generating functions with respect to this weight. 0 1 3 3 Example : For π = 1 1 3 , we have 2 4 z π = z − 22 z − 11+4 z 00+1 z 11+3 z 23 z 33 .

  10. Hook and Shifted Hook For a partition λ , the hook at ( i, j ) in D ( λ ) is defined by H D ( λ ) ( i, j ) = { ( i, j ) } ∪ { ( i, l ) ∈ D ( λ ) : l > j } ∪ { ( k, j ) ∈ D ( λ ) : k > i } . For a strict partition µ , the shifted hook at ( i, j ) in S ( µ ) is defined by H S ( µ ) ( i, j ) = { ( i, j ) } ∪ { ( i, l ) ∈ S ( µ ) : l > j } ∪ { ( k, j ) ∈ S ( µ ) : k > i } ∪ { ( j + 1 , l ) ∈ S ( µ ) : l > j } . We write � z [ H ] = z j − i ( i,j ) ∈ H for a finite subset H ⊂ P 2 .

  11. Example : The hook at (2 , 2) The shifted hook at (2 , 3) in D ((7 , 5 , 3 , 3 , 1)) in S ((7 , 6 , 4 , 3 , 1))

  12. Gansner’s Hook Product Formula (a) For a partition λ , the trace generating function of A ( D ( λ )) is given by 1 z π = � � 1 − z [ H D ( λ ) ( v )] . π ∈A ( D ( λ )) v ∈ D ( λ ) (b) For a strict partition µ , the trace generating function of A ( S ( µ )) is given by 1 z σ = � � 1 − z [ H S ( µ ) ( v )] . σ ∈A ( S ( µ )) v ∈ S ( µ )

  13. Idea of Proof of Gansner’s formula Consider generating functions z σ � R S ( µ ) ,τ ( z ) = σ ∈A ( S ( µ ) ,τ ) of shifted reverse plane partitions of shifted shape µ with profile τ , and express them in terms of Schur functions by using operator calculus on the ring of symmetric functions. Then we have � z π = � R S ( µ ) ,τ ( x ) R S ( ν ) ,τ ( y ) , τ π ∈A ( D ( λ )) z σ = � � R S ( µ ) ,τ ( z ) . τ σ ∈A ( S ( µ )) Hence Gansner’s formulae follow from Cauchy and Schur–Littlewood identities.

  14. Diagonals and Profile For an array of non-negative integers σ of shifted shape µ , we define its k -th diagonal σ [ k ] by putting σ [ k ] = ( · · · , σ 2 ,k +2 , σ 1 ,k +1 ) ( k = 0 , 1 , 2 , · · · ) . We call σ [0] the profile and put A ( S ( µ ) , τ ) = { σ ∈ A ( S ( µ )) : σ [0] = τ } . 0 0 1 2 3 3 Example : For σ = 1 2 3 3 3 , we have 2 4 σ [0] = (2 , 1 , 0) , σ [1] = (4 , 2 , 0) , σ [2] = (3 , 1) , σ [3] = (3 , 2) , σ [4] = (3 , 3) , σ [5] = (3) .

  15. A key is the following observation. Lemma The following are equivalent: (i) σ is a shifted reverse plane partition. (ii) Each σ [ k ] is a partition and � σ [ k − 1] ≻ σ [ k ] if k is a part of µ, σ [ k − 1] ≺ σ [ k ] otherwise . where we write α ≻ β if α 1 ≥ β 1 ≥ α 2 ≥ β 2 ≥ · · · , i.e., the skew diagram α/β is a horizontal strip.

  16. Let h k and h ⊥ k be the multiplication and skewing operators on the ring of symmetric functions Λ associated to the complete symmetric function h k . Consider the generating functions H + ( u ) = h k u k , H − ( u ) = h ⊥ k u k . � � k ≥ 0 k ≥ 0 and the operator D ( z ) : Λ → Λ defined by D ( z ) s λ = z | λ | s λ . First we apply the Pieri rule t | κ |−| λ | s κ , H − ( t ) s λ = t | λ |−| κ | s κ , H + ( t ) s λ = � � κ ≻ λ κ ≺ λ and Lemma above to obtain

  17. If we define ε 1 , · · · , ε N ( N ≥ µ 1 ) by Lemma � + if k is a part of µ, ε k = − otherwise , then we have D ( z 0 ) H ε 1 (1) D ( z 1 ) H ε 2 (1) D ( z 2 ) H ε 2 (1) · · · H ε N − 1 (1) D ( z N − 1 ) H ε N (1)1 � = R S ( µ ) ,τ ( z ) s τ , τ where R S ( µ ) ,τ ( z ) is the generating function of shifted reverse plane par- titions of shifted shape µ with profile τ : � z σ . R S ( µ ) ,τ ( z ) = σ ∈A ( S ( µ ) ,τ )

  18. Example : If µ = (6 , 5 , 2) and N = 6 , then ε = ( − , + , − , − , + , +) and we compute D ( z 0 ) H − (1) D ( z 1 ) H + (1) D ( z 2 ) H − (1) D ( z 3 ) H − (1) D ( z 4 ) H + (1) D ( z 5 ) H + (1)1 . σ [0] σ [1] σ [2] σ [3] σ [4] σ [5] ∅ σ [0] ≺ σ [1] ≻ σ [2] ≺ σ [3] ≺ σ [4] ≻ σ [5] ≻ ∅ .

  19. Commutation Relations By using the commutation relations D ( z ) H + ( u ) = H + ( zu ) D ( z ) , D ( z ) H − ( u ) = H − ( z − 1 u ) D ( z ) , D ( z ) D ( z ′ ) = D ( zz ′ ) , we obtain D ( z 0 ) H ε 1 (1) D ( z 1 ) H ε 2 (1) D ( z 2 ) H ε 2 (1) · · · H ε N − 1 (1) D ( z N − 1 ) H ε N (1) z ε N z ε 1 z ε 2 = H ε 1 (˜ 1 ) H ε 2 (˜ 2 ) · · · H ε N (˜ N ) D (˜ z N ) , where we put z k = z 0 z 1 · · · z k − 1 . ˜

  20. Further, by using the commutation relation 1 H − ( u ) H + ( v ) = 1 − uvH + ( v ) H − ( u ) , we can derive z ε N z ε 1 z ε 2 H ε 1 (˜ 1 ) H ε 2 (˜ 2 ) · · · H ε N (˜ N ) r N − r 1 H + (˜ H − (˜ � � � = z µ k ) z µ c l ) . z − 1 1 − ˜ k ˜ z µ l µ c µ c k <µ l k =1 l =1 where µ c is the strict partition formed by the complement of µ in { 1 , 2 , · · · , N } : { µ 1 , · · · , µ r } ⊔ { µ c 1 , · · · , µ c N − r } = { 1 , 2 , · · · , N } .

  21. Generating Functions in terms of Schur Functions Finally, by using the Cauchy identity r � H + (˜ � z µ 1 , · · · , ˜ z µ k )1 = s τ (˜ z µ r ) s τ , τ k =1 we have Proposition The generating function of shifted reverse plane partitions of shifted shape µ with profile τ is given by 1 z σ = � � · s τ (˜ z µ 1 , · · · , ˜ z µ r ) , z − 1 1 − ˜ k ˜ z µ l µ c µ c k <µ l σ ∈A ( S ( µ ); τ ) where { µ 1 , · · · , µ r } ⊔ { µ c 1 , · · · , µ c N − r } = { 1 , 2 , · · · , N } , and ˜ z k = z 0 z 1 · · · z k − 1 .

  22. Proof of Gansner’s Formula (a) for Shapes A reverse plane partition π ∈ A ( D ( λ )) is obtained by gluing two shifted reverse plane partitions σ ∈ A ( S ( µ )) and ρ ∈ A ( S ( ν )) with the same profile τ = σ [0] = ρ [0] , where two strict partitions µ and ν are defined by ν i = t λ i − i + 1 µ i = λ i − i + 1 , (1 ≤ i ≤ p ( λ )) . Example If λ = (4 , 3 , 1) , then µ = (4 , 2) , ν = (3 , 1) and 0 0 1 3 � 0 0 1 3 � , 0 1 3 1 2 2 ← → . 2 2 2 3 Hence Gansner’s formula follows from the Cauchy identity 1 � � s τ ( X ) s τ ( Y ) = . 1 − x i y j τ i,j

  23. Proof of Gansner’s Formula (b) for Shifted Shapes We have z σ = � � R S ( µ ) ,τ ( z ) , τ σ ∈A ( S ( µ )) so Gansner’s formula follows from the Schur–Littlewood identity 1 1 � � � s τ ( X ) = . 1 − x i 1 − x i x j τ i i<j

  24. ( q, t ) -Deformation of Gansner’s Formula

Recommend


More recommend