Transfer function realization for inner functions on the bidisk Joseph A. Ball Department of Mathematics, Virginia Tech, Blacksburg, VA, USA HeltonFest UCSD October 3, 2010
The classical Schur class Definition S ∈ S ( U , Y ) if S : D → holo L ( U , Y ) with � S ( z ) � ≤ 1 for z ∈ D . Then: ◮ S ∈ S ( U , Y ) if and only if there exists unitary/contractive � A B � U = : X ⊕ U → X ⊕ Y for some auxiliary X so that C D S ( z ) = D + zC ( I − zA ) − 1 B . ◮ Assume that U = Y : S is inner (boundary-value function S ( ζ ) on T is unitary-valued) ⇐ ⇒ can take U unitary with A and A ∗ stable (powers go to zero strongly). ◮ S is rational ⇐ ⇒ also dim X < ∞ . History Circuit theory: Youla, Newcombe, Belevitch, Wohlers Operator theory: Livˇ sic, Sz.-Nagy-Foias, de Branges-Rovnyak Scattering theory: Lax-Phillips Interconnections: Helton
d -variable generalizations Given S : D d → holo L ( U , Y ): S = S ( z ) where z = ( z 1 , . . . , z d ) ∈ D d Distinguish: ◮ S ∈ S d ( U , Y ): � S ( z ) � ≤ 1 for z ∈ D d . ◮ S ∈ SA d ( U , Y ): � S ( T ) � ≤ 1 for T = ( T 1 , . . . , T d ) commuting contractions on some H . Then: SA d ( U , Y ) ⊂ S d ( U , Y ) Consequence of Ando dilation theorem: SA 2 ( U , Y ) = S 2 ( U , Y ) Varopoulas: von Neumann ≤ fails for d ≥ 3 ⇒ Parrot: Sz.-Nagy/Ando Dilation Theorem fails for d > 2 = SA d ( U , Y ) � = S d ( U , Y ) for d > 2.
d -variable Schur-Agler class Agler(1990), B.-Trent (1998), Agler-McCarthy (1999): Then S ∈ SA d ( U , Y ) ⇐ ⇒ ◮ S has an Agler decomposition : For some positive kernels K k ( z , w ) on D d : I − S ( z ) S ( w ) ∗ = � d k =1 (1 − z k w k ) K k ( z , w ) � � � � � A B � ⊕ d ⊕ d k =1 X k ◮ There is a unitary U = k =1 X k : → so C D Y U that S ( z ) = D + C ( I − Z d ( z ) A ) − 1 Z d ( z ) B where � z 1 I X 1 � ... Z d ( z ) = . z d I X d Polydisk inner funtion: S : D d → holo L ( U , U ), lim r ↑ 1 S ( r ζ ) unitary for a.e. ζ ∈ T d .
Realization theory for rational inner Schur-Agler class Then: S rational inner Schur-Agler class ⇐ ⇒ ◮ Finite-dim. Agler decomposition: I − S ( z ) S ( w ) ∗ = � d k =1 (1 − z k w k ) K k ( z , w ) with K k pos. kernel with dim H ( K k ) < ∞ ◮ S ( z ) = D + C ( I − Z d ( z ) A ) − 1 Z d ( z ) B with � � � � � A B � ⊕ d ⊕ d k =1 X k k =1 X k U = : → unitary, dim X k < ∞ . C D C m C m Ingredients: ◮ Cole-Wermer (1999): p ( w ) ∗ = � d p ( z ) p ( w ) ∗ − � k =1 (1 − z k w k ) K ′ p ( z ) � k ( z , w ) with ⇒ K ′ p = polynomial, � p = reverse polynomial = k also a polynomial matrix (finite sum of squares) ◮ B.-Bolotnikov (2009): Agler decomposition − → canonical functional model realization: X k = H ( K k ).
Bidisk rational inner functions ⇒ SA 2 ( C m ) = S 2 ( C m ). Thus S rational inner ⇐ d = 2 = ⇒ S has �� I n 1 − z 1 A 11 �� − 1 � � − z 1 A 12 z 1 B 1 a realization S ( z ) = D + [ C 1 C 2 ] − z 2 A 21 I n 2 − z 2 A 22 z 2 B 2 where U is a unitary matrix of the form � � � � � � A 11 A 12 B 1 X 1 X 1 U = : → and dim X k < ∞ for k = 1 , 2. A 21 A 22 B 2 X 2 X 2 C m C m C 1 C 2 D Solution 1: Cole-Wermer/B.-Bolotnikov as above with extra ingredient: for d = 2 (scalar-valued case), one can obtain sum-of-squares/Agler decomposition p ( w ) ∗ = � 2 p ( z ) p ( w ) ∗ − � k =1 (1 − z k w k ) h k ( z ) h k ( w ) ∗ directly p ( z ) � (without appeal to Ando-Agler theory): Knese (arXiv preprint) Solution 2 (B.-Sadosky-Vinnikov (2005)): Any S ∈ S d ( U , Y ) can be realized as the scattering function of a Lax-Phillips d-evolution scattering system . When d = 2, one can identify unitary � A B � colligation matrix U = leading to realization of S from C D scattering geometry ; when S is rational, in addition one can verify that dim X 1 < ∞ , dim X 2 < ∞ .
Engineering/Circuit Theory Solution: Youla (1966) & Kummert (1989): Given a 2-var. DLBM ( discrete lossless bounded matrix = bidisk rational inner function ) S : Step 1: 12 ( z 1 )( z − 1 Write S ( z ) = S ′ 11 ( z 1 ) + S ′ 2 I mn 2 − S ′ 22 ( z 1 )) − 1 S ′ 21 ( z 1 ) where � S ′ � 11 S ′ S ′ ( z 1 ) = 12 ( z 1 ) is obtained explicitly from S ( z 1 , z 2 ) as S ′ 21 S ′ 22 follows: ◮ Write det S = σ g g poly with no zeros in D 2 ) g ( | σ | = 1, � � g , P ( z ) = P 0 ( z 1 ) + P 1 ( z 1 ) z 2 + · · · + P n 2 ( z 1 ) z n 2 ◮ Write S = P / � 2 , g ( z ) = a 0 ( z 1 ) + a 1 ( z 1 ) z 2 + · · · + a n 2 ( z 1 ) z n 2 � 2 . ◮ Set u i = a i a 0 , N i = P i a 0 for 0 ≤ i ≤ n 2 , A i = N i − N 0 u i for 1 ≤ i ≤ n 2 . ◮ Then S ′ 11 = N 0 , S ′ 12 = [ 0 ··· 0 I m ], 0 0 ··· 0 A n 2 − u n 2 I m . I m 0 ··· 0 − u n 2 − 1 I m . , S ′ does the job S ′ 21 = 22 = . . . . . . . . . . . . . A 2 A 1 0 0 ··· I m − u 1 I m
Step 2 of Kummert: � � � � I m 0 I m 0 Construct T ( z 1 ) so that S ′′ ( z 1 ) = S ′ ( z 1 ) is 0 T ( z 1 ) 0 T ( z 1 ) 1-var DLBM as follows: T constructed as solution of spectral factorization/sum-of-squares problem K = T − 1 � I r 0 � � T − 1 where 0 0 u 0 I m u 1 I m ··· u n 2 − 1 I m � u 0 I m u 1 I m � u 0 I m � u 0 I m ··· u n 2 − 2 I m K = . . ... ... . . . . � u n 2 − 1 I m � u n 2 − 2 I m ··· � u 0 I m u 0 I m � N 0 N 1 ··· N n 2 − 1 N 0 � � N 0 ··· N n 2 − 2 N 1 N 0 − ≥ 0 . . . . ... ... . . . . . . N n 2 − 1 � � � N 0 N n 2 − 2 ··· N 0
Kummert solution continued � S ′′ � 11 S ′′ Write S ′′ ( z 1 ) = ( z 1 ) where S ′′ 22 ( z 1 ) has size r × r . Then 12 S ′′ 21 S ′′ 22 S ′′ is DLBM and 12 ( z 1 )( z − 1 22 ( z 1 )) − 1 S ′′ S ( z 1 , z 2 ) = S ′′ 11 ( z 1 ) + S ′′ 2 I r − S ′′ 21 ( z 1 ) S ′′ ( z 1 ) is 1-var. DLBR so, by 1-variable theory, has a unitary finite-dimensional realization � S ′′ � � � � � 11 S ′′ 1 I n 1 − A ) − 1 [ B 1 B 2 ] . D 11 D 12 C 1 ( z − 1 12 ( z 1 ) = + S ′′ 21 S ′′ D 21 D 22 C 2 22 � � A B 1 B 2 with U := unitary matrix. Then C 1 D 11 D 12 C 2 D 21 D 22 S ( z 1 , z 2 ) = D + C ( I − Z 2 ( z ) A ) − 1 Z 2 ( z ) B where � A � A B 2 B 1 B is a unitary colligation matrix. = C 2 D 22 D 21 C D C 1 D 12 D 11 ⇒ new proof of Ando’s theorem. Arveson-Stinespring theory =
Nevanlinna-Agler class of the right half plane C + Nevanlinna class over the poly-right half plane ( C + ) d : H : ( C + ) d so that H ( z ) + H ( z ) ∗ ≥ 0 for z ∈ ( C + ) d . H : ( C + ) d so Nevanlinna-Agler class over the right half plane C + : that H ( T ) + H ( T ) ∗ ≥ 0 for T = ( T 1 , . . . , T d ) d -tuple of strictly accretive operators on some H Agler (1990) (after Cayley transform change of variable): ⇒ H ( z ) + H ( w ) ∗ = � d H ∈ NA ( U ) ⇐ k =1 ( z k + w k ) K k ( z , w ) for some positive kernels K k . 1-variable realization theory: more complicated: unbounded operators required in general, singularities at infinity: Staffans/Weiss (well-posed systems); Arlinski-Hassi-Tsekanovskii Circuit theory interest: Rational Cayley inner functions: H rational in N ( C m ) and boundary-value function satisfies H ( z ) + H ( z ) ∗ = 0 for z ∈ ( i R ) d . Koga (1968) asserted: H rational, d-variable Cayley inner, no poles ⇒ H ( z ) = D + B ∗ ( Z d ( z ) − A ) − 1 B with D = − D ∗ , at ∞ = A = − A ∗ = ⇒ H ∈ NA ( C m ) = ⇒ incorrect!
Koga’s gap Koga’s Factorization Lemma (1968): F = F ( x , . . . , x m ) is an n × n matrix polynomial of degree 2 in each x i with F ( x 1 , . . . , x m ) ≥ 0 (pos-semidef) for x i ’s real ⇒ F can be factored as F ( x ) = M ( x ) M ( x ) ∗ with M an n × q matrix polynomial in x 1 , . . . , x m with real coefficients. The proof uses: Koga’s Sum-of-Squares Lemma f = f ( x 1 , . . . , x m ) = polynomial over R , f quadratic in each variable, f ≥ 0 for real x i ⇒ f = � n i =1 h 2 i with each h i linear in each variable, n ≤ 2 m . Choi’s counterexample (1975) (publicized by N.K. Bose) f ( x 1 , x 2 , x 3 , y 1 , y 2 , y 3 ) = x 2 1 y 2 1 + x 2 2 y 2 2 + x 2 3 y 2 3 − 2( x 1 x 2 y 1 y 2 + x 2 x 3 y 2 y 3 + x 3 x 1 y 3 y 1 ) + 2( x 2 1 y 2 2 + x 2 2 y 2 3 + x 2 3 y 2 1 ) .
Connections with Hilbert problem Hilbert’s problem Given p = p ( x 1 , . . . , x m ) polynomial of even degree p with p ( x 1 , . . . , x m ) ≥ 0 for x i ’s real, find real polynomials h i so that f = � i h 2 i . Hilbert’s result Given the number of variables m and the even degree p , this is possible in general only for three cases: ◮ p = 2, m arbitrary: dehomogenize to reduce to the affine 1-variable case ◮ p arbitrary, m = 2: Sylvester inertia theorem ◮ p = 4, m = 3: Bernd Sturmfels talk Connection of Koga sum-of-squares lemma This does not prove Koga lemma wrong: the Koga quadratic-in-each-variable hypothesis does not include a whole Hilbert ( m , p ) class.
Recommend
More recommend