ZOH Equivalent First Order Transfer Function 5. Find the ZOH equivalent of K/ ( τs + 1) . � � Y s ( s ) = 1 K 1 1 τs + 1 = K s − s + 1 s τ � 1 − e − t/τ � y s ( t ) = K , t ≥ 0 � 1 − e − nT s /τ � y s ( nT s ) = K , n ≥ 0 Kz (1 − e − T s /τ ) z z � � Y s ( z ) = K = z − 1 − z − e − T s /τ ( z − 1)( z − e − T s /τ )
ZOH Equivalent First Order Transfer Function 5. Find the ZOH equivalent of K/ ( τs + 1) . � � Y s ( s ) = 1 K 1 1 τs + 1 = K s − s + 1 s τ � 1 − e − t/τ � y s ( t ) = K , t ≥ 0 � 1 − e − nT s /τ � y s ( nT s ) = K , n ≥ 0 Kz (1 − e − T s /τ ) z z � � Y s ( z ) = K = z − 1 − z − e − T s /τ ( z − 1)( z − e − T s /τ ) Dividing by z/ ( z − 1) , we get G ( z ) = K (1 − e − T s /τ ) z − e − T s /τ 5 Digital Control Kannan M. Moudgalya, Autumn 2007
ZOH Equivalent First Order Transfer Function 6. - Example
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 and find ZOH equivalent trans. function of 10 G a ( s ) = 5 s + 1
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 and find ZOH equivalent trans. function of 10 G a ( s ) = 5 s + 1 Scilab Code:
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 and find ZOH equivalent trans. function of 10 G a ( s ) = 5 s + 1 Scilab Code: Ga = tf(10,[5 1]);
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 and find ZOH equivalent trans. function of 10 G a ( s ) = 5 s + 1 Scilab Code: Ga = tf(10,[5 1]); G = ss2tf(dscr(Ga,0.5));
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 Scilab output is, and find ZOH equivalent trans. function of 10 G a ( s ) = 5 s + 1 Scilab Code: Ga = tf(10,[5 1]); G = ss2tf(dscr(Ga,0.5));
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 Scilab output is, and find ZOH equivalent 0 . 9546 G ( z ) = trans. function of z − 0 . 9048 10 G a ( s ) = 5 s + 1 Scilab Code: Ga = tf(10,[5 1]); G = ss2tf(dscr(Ga,0.5));
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 Scilab output is, and find ZOH equivalent 0 . 9546 G ( z ) = trans. function of z − 0 . 9048 10 = 10(1 − e − 0 . 1 ) G a ( s ) = 5 s + 1 z − e − 0 . 1 Scilab Code: Ga = tf(10,[5 1]); G = ss2tf(dscr(Ga,0.5));
ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 Scilab output is, and find ZOH equivalent 0 . 9546 G ( z ) = trans. function of z − 0 . 9048 10 = 10(1 − e − 0 . 1 ) G a ( s ) = 5 s + 1 z − e − 0 . 1 Scilab Code: In agreement with the Ga = tf(10,[5 1]); formula in the previous G = ss2tf(dscr(Ga,0.5)); slide 6 Digital Control Kannan M. Moudgalya, Autumn 2007
Discrete Integration 7.
Discrete Integration 7. u ( n ) u ( k − 1) u ( k ) n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) u ( k − 1) u ( k ) n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) u ( k ) n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) u ( k ) n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform:
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform: Y ( z ) = z − 1 Y ( z ) + T s U ( z ) + z − 1 U ( z ) � � 2
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform: Y ( z ) = z − 1 Y ( z ) + T s U ( z ) + z − 1 U ( z ) � � 2 Bring all Y to left side:
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform: Y ( z ) = z − 1 Y ( z ) + T s U ( z ) + z − 1 U ( z ) � � 2 Bring all Y to left side: Y ( z ) − z − 1 Y ( z ) = T s U ( z ) + z − 1 U ( z ) � � 2
Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform: Y ( z ) = z − 1 Y ( z ) + T s U ( z ) + z − 1 U ( z ) � � 2 Bring all Y to left side: Y ( z ) − z − 1 Y ( z ) = T s U ( z ) + z − 1 U ( z ) � � 2 (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 7 Digital Control Kannan M. Moudgalya, Autumn 2007
Transfer Function for Discrete Integration 8.
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z )
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 = T s z + 1 z − 1 U ( z ) 2
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 = T s z + 1 z − 1 U ( z ) 2 Integrator has a transfer function,
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 = T s z + 1 z − 1 U ( z ) 2 Integrator has a transfer function, G I ( z ) = T s z + 1 2 z − 1
Transfer Function for Discrete Integration 8. Recall from previous slide (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 = T s z + 1 z − 1 U ( z ) 2 Integrator has a transfer function, G I ( z ) = T s z + 1 2 z − 1 A low pass filter!
Transfer Function for Discrete Integration 8. Recall from previous slide Im ( z ) (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) × Re ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 = T s z + 1 z − 1 U ( z ) 2 Integrator has a transfer function, G I ( z ) = T s z + 1 2 z − 1 A low pass filter!
Transfer Function for Discrete Integration 8. Recall from previous slide Im ( z ) (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) × Re ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 1 s ↔ T s z + 1 = T s z + 1 z − 1 U ( z ) 2 z − 1 2 Integrator has a transfer function, G I ( z ) = T s z + 1 2 z − 1 A low pass filter! 8 Digital Control Kannan M. Moudgalya, Autumn 2007
Derivative Mode 9.
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter • Has a pole at z = − 1 .
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter • Has a pole at z = − 1 . Hence produces in partial fraction expansion, a term of the form
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter • Has a pole at z = − 1 . Hence produces in partial fraction expansion, a term of the form z z + 1 ↔ ( − 1) n
Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter • Has a pole at z = − 1 . Hence produces in partial fraction expansion, a term of the form z z + 1 ↔ ( − 1) n • Results in wildly oscillating control effort. 9 Digital Control Kannan M. Moudgalya, Autumn 2007
Derivative Mode - Other Approximations 10.
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 Y ( z ) = T s 1 − z − 1
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 s ↔
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1)
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 Y ( z ) = T s 1 − z − 1 U ( z )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 T s Y ( z ) = T s 1 − z − 1 U ( z ) = z − 1 U ( z )
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 T s Y ( z ) = T s 1 − z − 1 U ( z ) = z − 1 U ( z ) 1 s ↔
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 T s Y ( z ) = T s 1 − z − 1 U ( z ) = z − 1 U ( z ) 1 T s s ↔ z − 1
Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 T s Y ( z ) = T s 1 − z − 1 U ( z ) = z − 1 U ( z ) 1 T s s ↔ z − 1 Both derivative modes are high pass,
Recommend
More recommend