Orthogonality and orthonormality
Inner product 1 Definition (inner product) Let V be a vector space a function � · , · � : V × V → C is said to be an inner (dot) product if 1. � � u , � w � = � � w ,� u � 2. � α� u , � w � = α � � u , � w � 3. � � v + � u , � w � = � � v , � w � + � � u , � w � u = � 4. � � u ,� u � ≥ 0 where � � u ,� u � = 0 if and only if � 0
Example 2 � · , · � : C 3 × C 3 → C � u 1 w 1 � , � � u , � w � = u 2 w 2 u 3 w d w 1 � � = u 1 u 2 u 3 w 2 w 3 u T w = u 1 w 1 + u 2 w 2 + u 3 w 3 =
Example 3 − 2 i + 3 1 − 3 i + 2 i + 4 2 i + 3 0 i + 1 − 4 i + 3 i − 1
Example 4 � · , · � : C 3 × C 3 → C � u 1 w 1 � , � � u , � w � = u 2 w 2 u 3 w d w 1 2 0 0 � � = u 1 u 2 u 3 0 1 0 w 2 0 0 5 w 3 u T M w = 2 u 1 w 1 + 1 u 2 w 2 + 5 u 3 w 3 =
Example 5 � · , · � : C d × C d → C u 1 w 1 � � u 2 w 2 � � u , � w � = , . . . . . . u d w d w 1 w 2 � � = u 1 u 2 . . . u d . . . w d d u T w = � = u i w i i = 1
Example 6 � · , · � : C d × C d → C u 1 w 1 � � u 2 w 2 � � u , � w � = , . . . . . . u d w d w 1 w 2 � � = u 1 u 2 . . . u d M . . . w d u T M w M = M ∗ and positive definite =
Norm 7 Definition (Norm) Let V be a vector space a function � · � : V → [ 0 , ∞ ) is said to be a norm if u = � 1. � � u � = 0 if and only if � 0 2. � α� u � = | α |� � u � 3. � � u + � w � ≤ � � u � + � � w �
Example 8 � · � : C d → R � � u 1 � � � . � . � � u � = � � . � � � � u d � � � = u 1 u 1 + · · · + u d u d � � u 1 � . � . � � = u 1 . . . u d . � � u d � u T u =
Example 9 − 2 i + 3 1 − 3 i + 2 i + 4 2 i + 3 0 i + 1 − 4 i + 3 i − 1
Example 10 Let � · , · � : V × V → C define � � � � � u ,� � · � : V → R u � = u � Recall 2 0 0 w 1 � � � � u , � w � = u 1 u 2 u 3 0 1 0 w 2 0 0 5 w 3 = 2 u 1 w 1 + 1 u 2 w 2 + 5 u 3 w 3
Orthogonal vectors 11 Definition Let V be a vector space and � · , · � be an inner product on V . We say � u , � w ∈ V are orthogonal if � � u , � w � = 0
Example 12 i + 1 5 i + 1 − i + 3 − 4 i − 2 1 5 i + 6 i + 1 i + 6 − i + 1 − i − 7 i 3 i + 4 − 6 i + 1 − i + 6 i 0
Example 13 2 0 0 w � = u T w � � u , � 0 1 0 0 0 5 − 2 i + 3 1 − 3 i + 2 0 i + 4 2 i + 3 i + 1 − 4 i + 3 i − 1 25 i − 5 60 i + 60 26
Orthogonality and independence 14 Definition A set of vectors U = { � u 1 ,� u 2 , . . . ,� u k } is called orthogonal if � � � i � = j ⇒ u i ,� = 0 u j Theorem Let U = { � u 1 ,� u 2 , . . . ,� u k } be an orthogonal set of vectors. Then U is linearly independent.
Gram-Schmidt procedure 15 Theorem Let W = { � w 1 , � w 2 , . . . , � w k } be a set of linearly independent vectors. Define U = { � u 1 ,� u 2 , . . . ,� u k } by w i − � � u 1 , � w i � u 1 − � � u 2 , � w i � u 2 − · · · − � � u i − 1 , � w i � � u i = � u 1 � � u 2 � � u i − 1 � � u i − 1 � � u 1 ,� � � u 2 ,� � � u i − 1 ,� Then the vectors U are an orthogonal set of vectors and � W � = � U �
Example 16 1 0 1 1 2 0 1 0 3 − i 1 0 i + 1 1 i i + 1 1 i
Orthonormal set 17 Definition An orthogonal set of vectors U = { � u 1 ,� u 2 , . . . ,� u k } is orthonormal if for all i � � u i � = 1
Recommend
More recommend