Inner Product Spaces and Orthogonality Mongi BLEL King Saud University August 30, 2019 Mongi BLEL Inner Product Spaces and Orthogonality
Table of contents Mongi BLEL Inner Product Spaces and Orthogonality
Inner Product Definition Let V be a vector space on R . We say that a function � , � : V × V − → R is an inner product on V if it satisfies the following: For all u , v , w ∈ V , α ∈ R . 1 � u , v � = � v , u � 2 � u + v , w � = � u , w � + � v , w � 3 � α u , v � = α � u , v � 4 � u , u � ≥ 0 5 � u , u � = 0 ⇐ ⇒ u = 0 Mongi BLEL Inner Product Spaces and Orthogonality
Examples 1 The Euclidean inner product on R n defined by: n � � u , v � = x j y j = x 1 y 1 + . . . + x n y n , j =1 where u , v ∈ R n , u = ( x 1 , . . . , x n ) and v = ( y 1 , . . . , y n ). 2 If E = C ([0 , 1]) the vector space of continuous functions on [0 , 1]. For all f , g ∈ E , we define the inner product of f and g by: � 1 � f , g � = f ( t ) g ( t )t . . 0 Mongi BLEL Inner Product Spaces and Orthogonality
Remarks If ( E , � , � ) is an inner product space and u , v , w , x ∈ E , a , b , c , d ∈ R , we have: � u + v , w + x � = � u , w � + � u , x � + � v , w � + � v , x � . � au + bv , cw + dx � = ac � u , w � + ad � u , x � + bc � v , w � + bd � v , x � . Mongi BLEL Inner Product Spaces and Orthogonality
Example Let u = ( x , y ) and v = ( a , b ), we define � u , v � = 2 ax + by − bx − ay � , � is an inner product on R 2 . It is enough to prove that � u , u � ≥ 0 and � u , u � = 0 ⇐ ⇒ u = 0. � u , u � = 2 x 2 + y 2 − 2 xy = ( x − y ) 2 + x 2 ≥ 0 and � u , u � = 0 ⇐ ⇒ u = 0. Mongi BLEL Inner Product Spaces and Orthogonality
Example Let u = ( x , y , z ) and v = ( a , b , c ), we define � u , v � = 2 ax + by + 3 cz − bx − ay + cy + bz � , � is an inner product on R 3 . It is enough to prove that � u , u � ≥ 0 and � u , u � = 0 ⇐ ⇒ u = 0. ( y + z − x ) 2 − ( z − x ) 2 + 2 x 2 + 3 z 2 � u , u � = ( y + z − x ) 2 + ( x + z ) 2 + z 2 ≥ 0 = � u , u � = 0 ⇐ ⇒ z = x = y = 0 ⇐ ⇒ u = 0 . Mongi BLEL Inner Product Spaces and Orthogonality
Example Let u = ( x , y , z ) and v = ( a , b , c ), we define � u , v � = 2 ax + by + cz − bx − ay + cy + bz � , � is not an inner product on R 3 . ( y + z − x ) 2 − ( z − x ) 2 + 2 x 2 + z 2 � u , u � = ( y + z − x ) 2 + x 2 + 2 xz = ( y + z − x ) 2 + ( x + z ) 2 − z 2 . = Mongi BLEL Inner Product Spaces and Orthogonality
Example If A = ( a j , k ) ∈ M n ( R ), we define the trace of the matrix A by: n � tr ( A ) = a j , j j =1 and � A , B � = tr ( AB T ) for all A , B ∈ M n ( R ). � A , B � is an inner product on the vector space M n ( R ). Mongi BLEL Inner Product Spaces and Orthogonality
Exercise If u = ( x 1 , x 2 , x 3 ), v = ( y 1 , y 2 , y 3 ), we define the following functions: f , g , h , k : R 2 × R 3 − → R . 1 f ( u , v ) = x 1 y 1 + x 2 y 2 + 2 x 3 y 3 + x 2 y 1 + 2 x 1 y 2 + x 2 y 3 + y 2 x 3 . 2 g ( u , v ) = x 1 y 2 + x 2 y 1 + x 2 y 3 + x 3 y 2 + 3 x 1 y 3 + 3 x 3 y 1 . 3 h ( u , v ) = x 1 y 1 + x 2 y 2 + x 3 y 3 + x 2 y 1 + x 1 y 2 + x 2 y 3 + y 2 x 3 + x 3 y 1 + x 1 y 3 . 4 k ( u , v ) = x 1 y 1 + x 2 y 2 + x 3 y 3 x 2 y 3 x 3 y 2 + x 1 y 3 + y 1 x 3 . Select from which the functions f , g , h , k is an inner product on R 3 . Mongi BLEL Inner Product Spaces and Orthogonality
Solution 1 f ( u , v ) − f ( v , u ) = x 1 y 2 − x 2 y 1 . Then f is not an inner product on R 3 . 2 g ( u , u ) = 2 x 1 x 2 +2 x 2 x 3 +6 x 1 x 3 = 2( x 1 + x 3 )( x 2 +3 x 3 ) − 6 x 2 3 = ( x 1 + x 2 + 4 x 3 ) 2 − ( x 1 − x 2 − 2 x 3 ) 2 − 6 x 2 3 . . Then g is not an inner product on R 3 . 3 x 2 1 + x 2 2 + x 2 h ( u , u ) = 3 + 2 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 ( x 1 + x 2 + x 3 ) 2 = Then h is not an inner product on R 3 because h ( u , u ) = 0 �⇒ u = 0 . 4 Mongi BLEL Inner Product Spaces and Orthogonality
x 2 1 + x 2 2 + x 2 k ( u , u ) = 3 − 2 x 2 x 3 + 2 x 1 x 3 ( x 1 + x 3 ) 2 + x 2 = 2 − 2 x 2 x 3 ( x 1 + x 3 ) 2 + ( x 2 − x 3 ) 2 − x 2 = 3 Then k is not an inner product on R 3 because k ( u , u ) = 0 �⇒ u = 0 . Mongi BLEL Inner Product Spaces and Orthogonality
Example Find the values of a , b such that � ( x 1 , x 2 ) , ( y 1 , y 2 ) � = x 1 y 1 + x 2 y 2 + ax 1 y 2 + bx 2 y 1 is an inner product on R 2 . Mongi BLEL Inner Product Spaces and Orthogonality
Solution � ( x 1 , x 2 ) , ( y 1 , y 2 ) � = � ( y 1 , y 2 ) , ( x 1 , x 2 ) � if a = b . x 2 1 + x 2 � ( x 1 , x 2 ) , ( x 1 , x 2 ) � = 2 + 2 ax 1 x 2 ( x 1 + ax 2 ) 2 + x 2 2 (1 − a 2 ) . = Then � , � is an inner product on R 2 if and only if | a | < 1. Mongi BLEL Inner Product Spaces and Orthogonality
Definition Let ( E , � , � ) be an inner product space. 1 If u ∈ E , we define the norm of the vector u by: � � u � = � u , u � . 2 If u , v ∈ E , we define distance between u and v by: d ( u , v ) = � u − v � . 3 We define the angle 0 ≤ θ ≤ π between the vectors u , v ∈ E by: � u , v � cos θ = � u � . � v � Mongi BLEL Inner Product Spaces and Orthogonality
Let the inner product space M 2 ( R ) , � , � ) defined by: � A , B � = tr ( AB T ) . Find cos θ If θ is the angle between the matrices � 1 � � 2 � − 1 1 A = and B = . 2 3 1 1 � 1 � 0 AB T = , � A � 2 = 15, � B � 2 = 7. 7 5 Then √ cos θ = 2 3 √ . 35 Mongi BLEL Inner Product Spaces and Orthogonality
Theorem (Cauchy-Schwarz Inequality) If ( E , � , � ) is an inner product space and u , v ∈ E , then |� u , v �| ≤ � u �� v � . (1) We have the equality in ( ?? ) if the vectors u , v are linearly dependent. Mongi BLEL Inner Product Spaces and Orthogonality
Proof Let Q ( t ) be the polynomial Q ( t ) = � u + tv � 2 = � u � 2 + 2 t � u , v � + t 2 � v � 2 . Since Q ( t ) ≥ 0 for all t ∈ R , then the discriminant of Q ( t ) is non positive. Then � u , v � 2 ≤ � u � 2 � v � 2 . If |� u , v �| = � u �� v � , this mean that the discriminant of Q ( t ) is zero. Then the equation Q ( t ) = 0 has a solution. This means that the vectors u , v are linearly dependent. Mongi BLEL Inner Product Spaces and Orthogonality
Theorem If ( E , � , � ) is an inner product space and u , v ∈ E , then � u + v � ≤ � u � + � v � . Proof � u � 2 + � v � 2 + 2 � u , v � � u + v � 2 = � u � 2 + � v � 2 + 2 � u � � v � = ( � u � + � v � ) 2 . ≤ Mongi BLEL Inner Product Spaces and Orthogonality
Definition If ( E , � , � ) is an inner product space. We say that the vectors u , v ∈ E are orthogonal and we denote u ⊥ v if � u , v � = 0. Theorem (Pythagor’s Theorem) If u ⊥ v if and only if � u + v � 2 = � u � 2 + � v � 2 . Proof � u + v � 2 = � u � 2 + � v � 2 + 2 � u , v � = � u � 2 + � v � 2 . Mongi BLEL Inner Product Spaces and Orthogonality
Definition If ( E , � , � ) is an inner product space. We say that set S = { e 1 , . . . , e n } of non zeros vectors is orthogonal if � e j , e k � = 0 , ∀ 1 ≤ j � = k ≤ n . and we say that S is normal if � e j � = 1 , ∀ 1 ≤ j ≤ n . and we say that it is orthonormal if � e j , e k � = δ j , k , ∀ 1 ≤ j , k ≤ n . ( δ j , k = 0 If j � = k and δ j , j = 1.) Mongi BLEL Inner Product Spaces and Orthogonality
Theorem Any set of non zero orthogonal vectors is linearly independent . Mongi BLEL Inner Product Spaces and Orthogonality
Theorem If ( E , � , � ) is an inner product space and if S = { e 1 , . . . , e n } is an orthonormal basis of E , then for all u ∈ E u = � u , e 1 � e 1 + . . . + � u , e n � e n . Mongi BLEL Inner Product Spaces and Orthogonality
Proof n � a j e j , then � u , e k � = � n If u = j =1 a j � e j , e k � = a k . j =1 Mongi BLEL Inner Product Spaces and Orthogonality
Theorem (Gramm-Schmidt Algorithm) If ( E , � , � ) is an inner product space and ( v 1 , . . . , v n ) a set of linearly independent vectors in E , there is a unique orthonormal set ( e 1 , . . . , e n ) such that 1 for all k ∈ { 1 , . . . , n } , Vect ( e 1 , . . . , e k ) = Vect ( v 1 , . . . , v k ) , 2 for all k ∈ { 1 , . . . , n } , � e k , v k � > 0 . Mongi BLEL Inner Product Spaces and Orthogonality
Proof We construct in the first time an orthogonal set ( u 1 , . . . , u n ) such that: = u 1 v 1 v 2 − � u 1 , v 2 � u 2 = � u 1 � 2 u 1 . . . n − 1 � u i , v n � � u n = v n − � u i � 2 u i . i =1 We construct the set ( e 1 , . . . , e n ) from ( u 1 , . . . , u n ) as follows: u k e k = k ∈ { 1 , . . . , n } . � u k � , Mongi BLEL Inner Product Spaces and Orthogonality
Example Let F be the vector sub-space of R 4 spanned by the vectors S = { u = (1 , 1 , 0 , 0) , v = (1 , 0 , − 1 , 0) , w = (0 , 0 , 1 , 1) } . 1 Prove that S is a basis of the sub-space F . 2 In use of Gramm-Schmidt Algorithm, find an orthonormal basis of F . (with respect to the Euclidean inner product). Mongi BLEL Inner Product Spaces and Orthogonality
Recommend
More recommend