traffic flow estimation from cellular network data
play

traffic flow estimation from cellular network data Masters thesis - PowerPoint PPT Presentation

traffic flow estimation from cellular network data Masters thesis presentation Nils Breyer August 27, 2015 LiU/ITN, UC Berkeley (USA) why are linkflows of interest? Linkflow number of vehicles or people using a link during a certain time


  1. traffic flow estimation from cellular network data Master’s thesis presentation Nils Breyer August 27, 2015 LiU/ITN, UC Berkeley (USA)

  2. why are linkflows of interest? Linkflow number of vehicles or people using a link during a certain time Usage • Traffic planning • Traffic control 2

  3. why are linkflows of interest? Linkflow number of vehicles or people using a link during a certain time Usage • Traffic planning • Traffic control 2

  4. datasources Travel surveys Link counts Cellular networks 3

  5. datasources Travel surveys Link counts Cellular networks 3

  6. outline • Overview of the model • Trip extraction and travel demand estimation • Cellpath routing • Network loading • Results & validation 4

  7. Overview of the model 5

  8. cellpath Cellpath a sequence of cells that a user connected to along a trip 6

  9. 7 overview of the model Cellpath Network Cellular data routing loading Route link counts Celltower locations

  10. 7 overview of the model Cellpath Network Cellular data routing loading Route link counts Celltower locations

  11. problem: data only for a sample 8

  12. problem: data only for a sample 8

  13. od-matrix OD-matrix A matrix containing the traffic demand between pairs of origin and destination zones 9

  14. 10 overview of the model OD matrix Cellular data estimation Time-sliced OD matrix Network loading link counts Cellpath Celltower locations routing Route

  15. 10 overview of the model OD matrix Cellular data estimation Time-sliced OD matrix Network loading link counts Cellpath Celltower locations routing Route

  16. problem: data contains not only movements 2013-10-01 08:10:00 • Handover data • Call detail records (CDR) Datatypes Table 1: An example of a cellular network dataset 2 2013-10-01 08:20:00 2 3 1 User ID 1 2013-10-01 08:10:00 1 1 2013-10-01 06:50:00 1 Cell ID Timestamp 11

  17. problem: data contains not only movements 2013-10-01 08:10:00 • Handover data • Call detail records (CDR) Datatypes Table 1: An example of a cellular network dataset 2 2013-10-01 08:20:00 2 3 1 User ID 1 2013-10-01 08:10:00 1 1 2013-10-01 06:50:00 1 Cell ID Timestamp 11

  18. overview of the model 12 Trip OD matrix Cellular data extraction estimation Trips with Time-sliced cellpath OD matrix Network loading link counts Cellpath Celltower locations routing Linkpaths

  19. Trip extraction & travel demand estimation 13

  20. overview of the model 14 Trip OD matrix Cellular data extraction estimation Trips with Time-sliced cellpath OD matrix Network loading link counts Cellpath Celltower locations routing Linkpaths

  21. trip extraction Challenges • Depends on the datasource • Cell-switching due to network balancing • Low resolution in time (CDR) Solutions • algorithmic approach (CDR) • movement efficiency metric (handover data) 15

  22. trip extraction Challenges • Depends on the datasource • Cell-switching due to network balancing • Low resolution in time (CDR) Solutions • algorithmic approach (CDR) • movement efficiency metric (handover data) 15

  23. travel demand estimation Challenges • Additional data necessary • Sample might not be representative Solutions • Upscaling using total population • Data fusion with census data 16 • Vehicles ̸ = people

  24. travel demand estimation Challenges • Additional data necessary • Sample might not be representative Solutions • Upscaling using total population • Data fusion with census data 16 • Vehicles ̸ = people

  25. Cellpath routing 17

  26. overview of the model 18 Trip OD matrix Cellular data extraction estimation Trips with Time-sliced cellpath OD matrix Network loading link counts Cellpath Celltower locations routing Linkpaths

  27. cellpath routing problem Input Output A route consisting of connected links on the road network Goal Recover the original route that the user took 19 Cellpath p = ( b 1 , b 2 , ..., b n )

  28. voronoi diagram 20

  29. cellpath routing algorithms Shortest-path Routing shortest path between first and last cell in cellpath Strict Voronoi Routing route must go through every cell in the cellpath Lazy Voronoi Routing route is encouraged to go through cells in the cellpath 21

  30. shortest-path routing shortest path between first and last cell in cellpath 22

  31. strict voronoi routing route must go through every cell in the cellpath 23

  32. waypoint search 24 C 1 3 B 2 A Antenna position Boundary junction (possible waypoint)

  33. lazy voronoi routing route is encouraged to go through cells in the cellpath 25

  34. comparision between algorithms Shortest-path Strict Voronoi Lazy Voronoi 26

  35. Network loading 27

  36. overview of the model 28 Trip OD matrix Cellular data extraction estimation Trips with Time-sliced cellpath OD matrix Network loading link counts Cellpath Celltower locations routing Linkpaths

  37. single od-pair Shortest-path Strict Voronoi Lazy Voronoi 29

  38. single od-pair Shortest-path Strict Voronoi Lazy Voronoi 29

  39. single od-pair Shortest-path Strict Voronoi Lazy Voronoi 29

  40. Results & validation 30

  41. los angeles dataset Coverage I-210 corridor in Los Angeles, USA Input data • Antenna positions • OD-matrix estimated from real cellular data (UC Berkeley) • Simulated cellpaths (UC Berkeley) • OpenStreetMap road network 31

  42. V a E a and r b V b E b have a route similarity of: route validation Definition: Route similarity metric V b V a V b V a s a b Two routes r a 32 Celltower locations MatSim Cellpath OD-matrix simulation routing cellpath estimated route Validation MATSim route

  43. route validation Definition: Route similarity metric 32 Celltower locations MatSim Cellpath OD-matrix simulation routing cellpath estimated route Validation MATSim route Two routes r a = ( V a , E a ) and r b = ( V b , E b ) have a route similarity of: s ( a , b ) := | V a ∩ V b | | V a ∪ V b |

  44. route validation average of 1000 randomly selected routes 33 1.00) 0.80) Shortest) 0.60) Similarity2 Strict) 0.40) Lazy)(ds)=)0.03)) 0.20) 0.31) 0.43) 0.25) 0.00) E0.20)

  45. network loading result using Lazy Voronoi routing 34

  46. network loading validation 35

  47. Conclusions 36

  48. conclusions 1. Lazy Voronoi improves route recoverage over Shortest-path and Strict Voronoi routing 2. Route similarity not enough for a precise network loading 3. Data fusion with traffic counts could improve the result 37

  49. Nils Breyer nilsbreyer.eu 38

  50. 4-stage model 39 Trip Trip Mode Route choice & extraction distribution choice network loading link counts

  51. line simplification Ramer-Douglas Peuker algorithm 40 4 1 3 2

  52. lazy voronoi routing details 41 T ¡ W ¡ ¡ ¡ Voronoi-­‑routed ¡path ¡ S ¡ Actual ¡path ¡ ¡ ¡ Cellpath ¡ S ¡ Simplified ¡cellpath ¡ ¡ Lazy ¡Voronoi ¡route ¡ T ¡ ¡

  53. la network loading geh 42

Recommend


More recommend