internship report
play

Internship Report Erin Kersh July 27, 2009 Nextrans Center A - PowerPoint PPT Presentation

Internship Report Erin Kersh July 27, 2009 Nextrans Center A Strategic Planning Framework to Enhance Infrastructure Network Survivability and Functionality under Disasters Srinivas Peeta and Lili Du Outline Background Related


  1. Internship Report Erin Kersh July 27, 2009 Nextrans Center A Strategic Planning Framework to Enhance Infrastructure Network Survivability and Functionality under Disasters Srinivas Peeta and Lili Du

  2. Outline  Background  Related Literature  Problem Description  Related Methodologies  Bi-level Stochastic Problem  Knapsack Problem  Maximum Flow  Shortest Path  Model  Network  Data Analysis

  3. Background  Man made and natural disasters both represent randomness  Disasters disrupt the connectivity and functionality of transportation networks  Pre-Disaster Planning  Post-Disaster Management  Previous work shows that upgrading the network would negate this effect  Subject to budget limitations  Need to optimize which links to upgrade  Network Survivability  Network Connectivity

  4. Related Literature  Page and Perry (1994)  Soni, Gupta and Pirkul (1999)  Werner, Taylor, Moore, Mander, Jernigan, and Hwang  Liu and Fan (2006)  Murray-Tuite and Mahmassani (2004)  Matisziw and Murray (2007)

  5. Problem Description  First Stage - Investment Decisions  Link importance is measured in the first level in terms of:  Network connectivity - W c  Improvement of survivability rate - W p  Expected traffic flow – W f  Second Stage - Network Performance  Expected travel time

  6. Related Methodologies  Bi-level stochastic problem  Knapsack Problem  Determine the best use of the budget to improve connectivity  Maximum Flow  Requires paths to take into account the maximum allowable capacity  Shortest Path  Used to determine functional routes in the surviving network after a disaster

  7. Bi-Level Stochastic Network Model

  8. Two-Stage Stochastic Model

  9. Sioux Fall City Network 24 Nodes 38 Two-Way Links (76 Total Links) Liu and Fan (2006)

  10. Input Data for The Algorithm  Travel Time  Upgrade Cost  Probability of Disaster  Probability of Link Failure  Capacity  Randomly assigned using service volumes of multilane highways in LOS C

  11. My Work  Test the sensitivity of O-D Pairs  Number  Configuration  For the given network, determined 4 O-D pair scenarios:  OD2  OD5  ODcenter  ODspread

  12. Chart Flow of O-D Pair Sensitivity Analysis

  13. First Set of O-D Pairs Used for Sensitivity Analysis: Importance of the Number of O-D Pairs 2 O-D Pairs 5 O-D Pairs

  14. Results for Sensitivity Analysis of the Number of O-D Pairs Used in the Algorithm Network With 5 O-D Pairs Using Y2 vs Y5 Expected Travel Time for the Shortest 835 830 825 Path Across ODs 820 815 810 805 800 Y_MSA_OD2 Y_MSA_OD5

  15. Results for Sensitivity Analysis of the Number of O-D Pairs Used in the Algorithm Network With 5 O-D Pairs Using Y2 vs Y5 Average Expected OD Survivability 0.415 0.41 0.405 0.4 0.395 0.39 Y_MSA_OD2 Y_MSA_OD5

  16. Results for Sensitivity Analysis of the Number of O-D Pairs Used in the Algorithm Network With 2 O-D Pairs Using Y2 vs Y5 385 Expected Travel Time for the Shortest Path Across ODs 380 375 370 365 360 355 Y_MSA_OD2 Y_MSA_OD5

  17. Results for Sensitivity Analysis of the Number of O-D Pairs Used in the Algorithm Network With 2 O-D Pairs Using Y2 vs Y5 0.35 Average Expected OD Survivability 0.34 0.33 0.32 0.31 0.3 0.29 Y_MSA_OD2 Y_MSA_OD5

  18. Second Set of O-D Pairs Used For Sensitivity Analysis: Importance of O-D Pair Configuration Centralized O-D Pairs Spread Out O-D Pairs

  19. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Network With Centered O-D Pairs Using YCenter vs. YSpread 1050 Expected Travel Time for the Shortest 1000 Path Across ODs 950 900 850 800 Y_MSA_ODSpread Y_MSA_ODCenter

  20. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Network With Centered O-D Pairs Using YCenter vs. YSpread 0.55 Average Expected OD Survivability 0.54 0.53 0.52 0.51 0.5 0.49 0.48 0.47 0.46 0.45 Y_MSA_ODSpread Y_MSA_ODCenter

  21. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Network With Spread Out O-D Pairs Using YCenter vs. YSpread 1380 Expected Travel Time for the Shortest 1360 1340 Path Across ODs 1320 1300 1280 1260 1240 1220 Y_MSA_ODSpread Y_MSA_ODCenter

  22. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Network With Spread Out O-D Pairs Using YCenter vs. YSpread 0.36 Average Expected OD Survivability 0.35 0.34 0.33 0.32 0.31 0.3 0.29 0.28 Y_MSA_ODSpread Y_MSA_ODCenter

  23. Third Set of O-D Pairs Used For Sensitivity Analysis: Importance of O-D Pair Configuration Spread Out O-D Pairs Centralized O-D Pairs “In Between” O-D Pairs

  24. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Centered O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 800 Expected Travel Time for the Shortest Path Across ODs 750 700 650 600 550 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  25. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Centered O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 0.64 0.62 Average Expected OD 0.6 Survivability 0.58 0.56 0.54 0.52 0.5 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  26. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Spread Out O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 1180 Expected Travel Time for the Shortest Path Across ODs 1160 1140 1120 1100 1080 1060 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  27. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Spread Out O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 0.35 Average Expected OD 0.34 0.33 Survivability 0.32 0.31 0.3 0.29 0.28 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  28. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Middle O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 1080 Expected Travel Time for the Shortest Path Across ODs 1070 1060 1050 1040 1030 1020 1010 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  29. Results for the Sensitivity Analysis of the Configuration of O-D Pairs Used in the Algorithm Middle O-D Pairs Network Using YCenter2 vs. YMiddle vs. YSpread2 0.385 0.38 Average Expected OD 0.375 Survivability 0.37 0.365 0.36 0.355 0.35 Y_MSA_ODSpread2 Y_MSA_ODCenter2 Y_MSA_ODMiddle

  30. Conclusion  Fewer O-D Pairs can be used to determine network survivability  Centered network out-performed other investment strategies

  31. Questions or Comments?

  32. Knapsack Problem  Any IP that has only one constraint  Branch-and-Bound Method  Each variable (x i ) must equal 0 or 1:  c i /a i = benefit item i earns for each unit of resource used by item i (larger value = better item)  To Solve: Compute all c i /a i values, put best item in knapsack, put the second-best item in knapsack, continue until the best remaining item will fill the knapsack

  33. Maximum Flow  Problem in which the arcs have a capacity which limits the quantity of a product that can be shipped through that arc  0 ≤ flow through each arc ≤ capacity  Flow into node i = flow out of node i (conservation-of-flow constraint)  Ford-Fulkerson Method – is it optimal flow or can it be modified to have a larger flow?

  34. Shortest Path  Problem of finding the shortest path (path of min length) from node 1 to another node  Dijkstra’s Algorithm – find shortest path from one node to all others  Add what we used

Recommend


More recommend