tr tripl iple e in integra tegrals ls
play

Tr Tripl iple e In Integra tegrals ls Triple Integrals: ( - PowerPoint PPT Presentation

Tr Tripl iple e In Integra tegrals ls Triple Integrals: ( , , ) f x y z dv V Important properties of the Triple integral: a f x y z dv , , a f x y z dv , , , V V


  1. Tr Tripl iple e In Integra tegrals ls

  2. Triple Integrals:  ( , , ) f x y z dv V Important properties of the Triple integral:        a f x y z dv , , a f x y z dv , , , V V       ( ( , , ) f x y z g x y z dv ( , , )) f x y z dv ( , , ) g x y z dv ( , , ) . V V V      f x y z dv ( , , ) f x y z dv ( , , ) f x y z dv ( , , ) V V V 1 2

  3. Evaluating the triple integral in rectangular coordinates    f x y z dv , , V       x x y , b 2 2          f x y z dv , , f x y z dzdA , ,       V b x x y , 1 1

  4. Example     x y dv Evaluate the iterated integral V over the region V bounded by the planes:       x 0 , y 0 , z 0 , x y z 1. Solution:    1 x y 1 1 x            x y dv x y dzdydx V 0 0 0    z 1 x y  1 1 x       x y z dydx  0 0 z 0  1 1 x          x y 1 x y dydx 0 0

  5. Remark: f x y z  If ( , , ) 1 , then the volume of the solid V is   V dv V  ( , , ) , is density, then the mass of the solid V If x y z   ( , , )  m x y z dv V The coordinates of the center of the solid V are given by:     1 1   x x ( , , ) x y z dv , y y ( , , ) x y z dv , c c m m V V 1    ( , , ) . z z x y z dv c m V

  6. Example Find the volume and the coordinates of the center of gravity of : the region bounded by the parabolic cylinder   2     z 4 x and x 0 , y 0 , y 6 , z 0. Assuming the density to be constant k . Solution:   2     y 6 y 6 x 2 z 4 x x 2   2        z 4 x   V dzdydx z dydx  z 0      x 0 y 0 z 0 x 0 y 0    y 6 x 2 x 2         y 6     2 2 4 x dydx 4 x y dx  y 0    0 0 0 x y x  x 2   2   1    2   3    6 4 6 4 32 x dx x x   3  0 x 0

  7. The mass of solid is :        m x y z dxdydz , , k dxdydz V V     k dxdydz kV 32 k V The coordinates of the centre of gravity : 1 k      x xdzdydx xdzdydx c 32 k m V V  2 2 6 4 x 1 4      xdzdydx 32 3 0 0 0

  8. k 1      y y dz dy dx ydzdydx c m 32 k V V  2 2 6 4 x 1      3 ydzdydx 32 0 0 0 1 k      z z dz dy dx z dz dy dx c m 3 2 k V V  2 2 6 4 x 1    8   zdzdydx 32 5 0 0 0

Recommend


More recommend