towards real time simulation
play

Towards Real-time Simulation of Deformable Objects From mass-spring - PowerPoint PPT Presentation

Towards Real-time Simulation of Deformable Objects From mass-spring system to general hyper-elastic materials GAMES Webinar Presentation Tiantian Liu Joint Work with: Adam Bargteil, Sofien Bouaziz, Ladislav Kavan, Sebastian Martin, James


  1. Towards Real-time Simulation of Deformable Objects From mass-spring system to general hyper-elastic materials GAMES Webinar Presentation Tiantian Liu Joint Work with: Adam Bargteil, Sofien Bouaziz, Ladislav Kavan, Sebastian Martin, James Oโ€™Brien, Mark Pauly

  2. Towards Real-time Simulation of Deformable Objects From mass-spring system to general hyper-elastic materials

  3. Towards Real-time Simulation of Deformable Objects 3

  4. [Assassin's Creed II, Ubisoft, 2012] Real-time Physics Towards Real-time Simulation of Deformable Objects 4

  5. Off-line Physics Towards Real-time Simulation of Deformable Objects 6

  6. [VirtaMed] Applications with non-negotiable latency and accuracy E.g. Virtual Surgery Towards Real-time Simulation of Deformable Objects 8

  7. Goal: Fast simulation of general hyperelastic materials Towards Real-time Simulation of Deformable Objects 9

  8. Goal: Fast simulation of general hyperelastic materials Simple Towards Real-time Simulation of Deformable Objects 10

  9. Related Work: Classic work [Goldenthal et al. 2007] [Tournier et al. 2015] [Baraff and Witkin 1998] Towards Real-time Simulation of Deformable Objects 11

  10. Related Work: Position Based Dynamics [Mรผller et al. 2007] [Macklin et al. 2016] Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials 12

  11. Related Work: Projective Dynamics [Liu et al. 2013] [Bouaziz et al. 2014] [Narain et al. 2016] Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials 13

  12. Related Work: Chebyshev Methods [Wang 2015] [Wang and Yang 2016] Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials 14

  13. Related Work: Quasi-Newton Methods in Geometry Processing [Kovalsky et al. 2016] [Rabinovich et al. 2017] Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials 15

  14. Quasi-Newton Methods ๐›ผ 2 ๐’‰ ๐’š โˆ’1 โˆ†๐’š = โˆ’ ๐›ผ๐’‰ ๐’š ๐‘ฉ ๐’‰ ๐’š ๐’š Towards Real-time Simulation of Deformable Objects 16

  15. Spatial Discretization Towards Real-time Simulation of Deformable Objects 17

  16. Temporal Discretization Already known ๐‘ง ๐‘ฆ 0 ๐‘ฆ โ„Ž = 33๐‘›๐‘ก Time Axis Towards Real-time Simulation of Deformable Objects 18

  17. Implicit Euler Time Integration ๐‘ง ๐‘ฆ 0 ๐‘ฆ โ„Ž = 33๐‘›๐‘ก Time Axis 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ต ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐‘ฆ Towards Real-time Simulation of Deformable Objects 19

  18. Variational Implicit Euler inertial potential Elastic potential ๐‘ง โ€ฆpure inertial motion (Newtonโ€™s 1 st Law) ๐‘ง = ๐‘ฆ ๐‘œ + โ„Ž๐‘ค ๐‘œ 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ต ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐น โ€ฆelastic potential (energy) ๐‘ฆ Towards Real-time Simulation of Deformable Objects 20

  19. Variational Implicit Euler 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ต ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐‘ฆ inertial potential Elastic potential Implicit Euler: Compromise between inertia and elasticity Towards Real-time Simulation of Deformable Objects 21

  20. Mass-spring System: Basis Hookeโ€™s Law: ๐น ๐’’ ๐Ÿ , ๐’’ ๐Ÿ‘ = 1 ๐’’ ๐Ÿ โˆ’ ๐’’ ๐Ÿ‘ โˆ’ ๐‘  2 2 ๐‘™ Non-quadratic Non-convex ๐’’ 2 ๐‘  ๐’’ 1 Towards Real-time Simulation of Deformable Objects 22

  21. Non-convex Potential rest length ๐น( 1 โˆ’ ๐‘ข ๐’ƒ + ๐‘ข๐’„) ๐’ƒ ๐Ÿ. ๐Ÿ”๐’ƒ + ๐Ÿ. ๐Ÿ”๐’„ ๐’„ Towards Real-time Simulation of Deformable Objects 23

  22. Standard Solution: Newtonโ€™s Method 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐‘ฆ ๏Š ๏Œ ๏Œ ๏ต Slow ๏ต ๐›ผ 2 ๐น depends on ๐‘ฆ ๏Œ ๏ต Non-convex ๏ต The Hessian ๐‘ + โ„Ž 2 ๐›ผ 2 ๐น can be indefinite Towards Real-time Simulation of Deformable Objects 24

  23. Standard Solution: Newtonโ€™s Method ๐น( 1 โˆ’ ๐‘ข ๐’ƒ + ๐‘ข๐’„) ๐’ƒ ๐Ÿ. ๐Ÿ”๐’ƒ + ๐Ÿ. ๐Ÿ”๐’„ ๐’„ Towards Real-time Simulation of Deformable Objects 25

  24. Ideal Problem Reformulation Large Convex Quadratic Problem (Ideally with Constant System Matrix) Many Small Non-convex Problems (Ideally Independent) Towards Real-time Simulation of Deformable Objects 26

  25. Hookeโ€™s Law with auxiliary variables ๏ต For the i-th spring: 1 ๐‘— 2 ๏ต ๐น ๐‘— ๐’š = 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐‘  ๏ต Introduce auxiliary variable ๐’† ๐‘— where ๐’† ๐‘— = ๐‘  ๐‘— ๐’† ๐‘— ๐’’ ๐‘—2 ๐’’ ๐‘—1 Towards Real-time Simulation of Deformable Objects 27

  26. Hookeโ€™s Law with auxiliary variables 1 1 2 ๐‘— 2 ๏ต min 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐’† ๐‘— = 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐‘  ๐’† ๐‘— =๐‘  ๐‘— ๐‘ž ๐‘—1 โˆ’๐‘ž ๐‘—2 ๏ต When ๐‘’ ๐‘— = ๐‘  ๐‘— ๐‘ž ๐‘—1 โˆ’๐‘ž ๐‘—2 ๐’† ๐‘— ๐’’ ๐‘—2 ๐’’ ๐‘—1 Towards Real-time Simulation of Deformable Objects 28

  27. Hookeโ€™s Law with auxiliary variables 1 2 ๐น ๐’š = min 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐’† ๐‘— ๐’† ๐‘— =๐‘  ๐‘— ๐‘— 1 2 ๐น ๐’š = min 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐’† ๐‘— ๐’†โˆˆโ„ณ ๐‘— ๐’’ ๐‘—2 ๐’’ ๐‘—1 Towards Real-time Simulation of Deformable Objects 29

  28. Variational Time Integration with Auxiliary Variable 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ต ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐‘ฆ 1 2 ๐’š ๐‘ˆ ๐‘ฉ๐’š + ๐’š ๐‘ˆ ๐‘ช๐’† + ๐’… , ๐‘ก. ๐‘ข. ๐’† โˆˆ ๐“ min ๐‘ฆ,๐‘’ ๐’† โˆˆ ๐“ ๐’† ๐’‹ = ๐‘  ๐‘— Towards Real-time Simulation of Deformable Objects 30

  29. Optimization 1 2 ๐’š ๐‘ˆ ๐‘ฉ๐’š + ๐’š ๐‘ˆ ๐‘ช๐’† + ๐’… , ๐‘ก. ๐‘ข. ๐’† โˆˆ โ„ณ min ๐‘ฆ,๐‘’ ๏ต ๐‘ฉ, ๐‘ช, ๐’… does not depend on ๐’š or ๐’† ๏ต If we fix ๐’š -> easy to solve for ๐’† ๏ต If we fix ๐’† -> easy to solve for ๐’š ๏ต Invites alternate solver (local/global) Towards Real-time Simulation of Deformable Objects 31

  30. Local Step ๏ต For each spring, project to unit length using the current ๐’š to find ๐’† ๐’‹ ๏ต Trivially Parallelizable ๐’† ๐‘— ๐’’ ๐‘—2 ๐’’ ๐‘—1 Towards Real-time Simulation of Deformable Objects 32

  31. Global Step 1 2 ๐’š ๐‘ˆ ๐‘ฉ๐’š + ๐’š ๐‘ˆ ๐‘ช๐’† + ๐’… , ๐‘ก. ๐‘ข. ๐’† โˆˆ โ„ณ min ๐‘ฆ,๐‘’ ๐บ๐‘—๐‘ฆ ๐’†: ๐’š โˆ— = โˆ’๐‘ฉ โˆ’1 (๐‘ช๐’† + ๐’…) ๏ต Matrix ๐‘ฉ is: ๏ต Independent of ๐’š and ๐’† (Constant) ๏ต Positive Definite ๏ต Thus can be pre-factorized (using e.g. Cholesky) Towards Real-time Simulation of Deformable Objects 33

  32. Alternating Solver Large Convex Quadratic Problem (with Constant System Matrix) Many Small Non-convex Problems Towards Real-time Simulation of Deformable Objects 34

  33. Performance Our Method Newtonโ€™s Method Towards Real-time Simulation of Deformable Objects 35

  34. Performance Newtonโ€™s Method Our Method Towards Real-time Simulation of Deformable Objects 36

  35. Remark: Fast Mass-spring Systems 1 2 ๐‘ฆ โˆ’ ๐‘ง ๐‘ˆ ๐‘ต ๐‘ฆ โˆ’ ๐‘ง + โ„Ž 2 ๐น(๐‘ฆ) min ๐‘ฆ 1 = 1 2 ๐‘— 2 min 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐’† ๐‘— 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐‘  ๐’† ๐‘— =๐‘  ๐‘— 1 2 ๐’š ๐‘ˆ ๐‘ฉ๐’š + ๐’š ๐‘ˆ ๐‘ช๐’† + ๐’… , ๐‘ก. ๐‘ข. ๐’† โˆˆ ๐“ min ๐‘ฆ,๐‘’ Towards Real-time Simulation of Deformable Objects 37

  36. Beyond Mass-spring Systems ๐’’ ๐’‹๐Ÿ โˆ’ ๐’’ ๐’‹๐Ÿ‘ ๐’† ๐‘— ๐’’ ๐‘—2 ๐’’ ๐‘—1 ๐’† ๐‘— Towards Real-time Simulation of Deformable Objects 38

  37. Distance from Constraint Manifold ๐’’ ๐’‹๐Ÿ โˆ’ ๐’’ ๐’‹๐Ÿ‘ : naรฏve differential operator 0 0 โ‹ฎ 1 ๐’‹๐Ÿ โ‹ฎ ๐’’ ๐’‹๐Ÿ โˆ’ ๐’’ ๐’‹๐Ÿ‘ = ๐‘ฏ ๐’‹ ๐’š โˆ’1 ๐’‹๐Ÿ‘ โ‹ฎ 0 0 ๐‘ฏ ๐’‹ Towards Real-time Simulation of Deformable Objects 39

  38. Distance from Constraint Manifold ๐’’ ๐’‹๐Ÿ โˆ’ ๐’’ ๐’‹๐Ÿ‘ = ๐‘ฏ ๐’‹ ๐’š 1 2 ๐น ๐’š = min 2 ๐‘™ ๐‘— ๐’’ ๐‘—1 โˆ’ ๐’’ ๐‘—2 โˆ’ ๐’† ๐‘— ๐’†โˆˆโ„ณ ๐‘— 2 ๐น ๐’š = min ๐‘ฅ ๐‘— ๐‘ฏ ๐’‹ ๐’š โˆ’ ๐’† ๐‘— ๐’†โˆˆโ„ณ ๐‘— Towards Real-time Simulation of Deformable Objects 40

  39. Deformation Gradient ๐‘ฏ๐’š Rest pose ๐’€ Current pose ๐’š Towards Real-time Simulation of Deformable Objects 41

  40. Distance from Constraint Manifold 2 ๐น ๐’š = min ๐‘ฅ ๐‘— ๐‘ฏ ๐’‹ ๐’š โˆ’ ๐’† ๐‘— ๐’†โˆˆโ„ณ ๐‘— ๐‘ฏ ๐’‹ ๐’š ๐‘ฏ ๐’‹ ๐’š ๐’† ๐’‹ ๐’† ๐‘— Towards Real-time Simulation of Deformable Objects 42

  41. Intuitive Projection Manifold: SO(3) ๏ต SO(3) โ€ฆ Best Fit Rotation Matrix ๏ต โ€œAs Rigid As Possibleโ€ [Chao et al. 2010] Towards Real-time Simulation of Deformable Objects 43

  42. Intuitive Projection Manifold: SL(3) ๏ต SL(3) โ€ฆ Group of Matrices with det = 1 ๏ต Volume Preservation Towards Real-time Simulation of Deformable Objects 44

  43. Other Constraint Manifolds (Example Based) Towards Real-time Simulation of Deformable Objects 45

  44. Other Constraint Manifolds (Laplace-Beltrami operator) Towards Real-time Simulation of Deformable Objects 46

  45. Remark: Projective Dynamics 2 ๐น ๐’š, ๐’† = min ๐‘ฅ ๐‘— ๐‘ฏ ๐’‹ ๐’š โˆ’ ๐’† ๐‘— ๐‘ก. ๐‘ข. ๐’† โˆˆ โ„ณ ๐’š,๐’† ๐‘— 1 2 ๐’š ๐‘ˆ ๐‘ฉ๐’š + ๐’š ๐‘ˆ (๐‘ช๐’† + ๐’…) min ๐’š,๐’† ๐‘• ๐’š, ๐’† = min ๐‘ก. ๐‘ข. ๐’† โˆˆ โ„ณ ๐’š,๐’† ๏ต Like before, ๐‘ฉ, ๐‘ช, ๐’… does not depend on ๐’š and ๐’† ๏ต If we fix ๐’š -> easy to solve for ๐’† : Projection ๏ต If we fix ๐’† -> easy to solve for ๐’š : ๐’š โˆ—= โˆ’๐‘ฉ โˆ’1 (๐‘ช๐’† + ๐’…) Towards Real-time Simulation of Deformable Objects 47

Recommend


More recommend