towards real time simulation
play

Towards Real-time Simulation of Hyperelastic Materials A - PowerPoint PPT Presentation

Towards Real-time Simulation of Hyperelastic Materials A Dissertation Presentation Tiantian Liu April 24 th 2018 Deformable Body Simulation Limited Human Interactivity in Mixed Reality Environments Limited Materials in Real-time Simulators


  1. Remark: Projective Dynamics 2 𝑼 π’š βˆ’ 𝒒 π‘˜ 𝐹 π’š = min π‘₯ π‘˜ 𝑯 π’Œ π’’βˆˆβ„³ π‘˜ 1 + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒 + 𝐷 min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 ,π’’βˆˆπ“  Like before, 𝑡, 𝑴, 𝑲, 𝒅 does not depend on π’š and 𝒒  If we fix π’š -> easy to solve for 𝒒 : Projection βˆ’1  If we fix 𝒒 -> easy to solve for π’š : π’š βˆ— = 𝑡 𝑡 β„Ž 2 + 𝑴 β„Ž 2 𝒛 + 𝑲𝒒

  2. Limitation: Projective Dynamics 2 𝑼 π’š βˆ’ 𝒒 π‘˜ 𝐹 π’š = min π‘₯ π‘˜ 𝑯 π’Œ π’’βˆˆβ„³ π‘˜ 𝐸𝑗𝑑𝑑𝑠𝑓𝑒𝑓 π‘‡β„Žπ‘π‘žπ‘“ πΈπ‘“π‘‘π‘‘π‘ π‘—π‘žπ‘’π‘π‘  βˆ’ π‘„π‘ π‘π‘˜π‘“π‘‘π‘’π‘—π‘π‘œ 2 Special Requirement for the Energy Representation

  3. More Materials? Soft ARAP Stiff ARAP

  4. Spline-Based Materials [Xu et al. 2015] Polynomial Soft ARAP Stiff ARAP Material [Xu et al. 2015]

  5. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Tiantian Liu, Sofien Bouaziz, Ladislav Kavan ACM Transactions on Graphics 36(3) [Presented at SIGGRAPH],2017.

  6. Reformulation of Projective Dynamics 1 + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒 + 𝐷 min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 ,π’’βˆˆπ“ 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š)

  7. Reformulation of Projective Dynamics 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š) 𝛼𝒉 π’š = 𝑡 β„Ž 2 π’š βˆ’ 𝒛 + π‘΄π’š βˆ’ 𝑲𝒒 π’š + πœ–π’’ π’š : (𝑻𝒒 π’š βˆ’ 𝑲 𝑼 π’š) πœ–π’š 0

  8. Projection Differential 𝑯 𝑼 π’š 2 = 𝑯 𝑼 π’š βˆ’ 𝒒 π’š π‘ˆ πœ€ 𝑯 𝑼 π’š βˆ’ 𝒒 π’š 𝑯 𝑼 πœ€π’š 𝒒(π’š) βˆ’πœ€π’’ π’š π‘ˆ 𝑯 𝑼 π’š βˆ’ 𝒒 π’š πœ€π’’ π’š

  9. Reformulation of Projective Dynamics 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š) 𝛼𝒉 π’š = 𝑡 β„Ž 2 π’š βˆ’ 𝒛 + π‘΄π’š βˆ’ 𝑲𝒒 π’š + πœ–π’’ π’š : (𝑻𝒒 π’š βˆ’ 𝑲 𝑼 π’š) πœ–π’š βˆ’1 𝑡 ( 𝑡 𝑡 β„Ž 2 + 𝐌) βˆ’1 𝛼𝒉 π’š = π’š βˆ’ β„Ž 2 + 𝑴 β„Ž 2 𝒛 + 𝑲𝒒 π’š βˆ— = π’š βˆ’ (𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š π’š βˆ—

  10. Reformulation of Projective Dynamics Compare to one Newton step: π’š βˆ— = π’š βˆ’ 𝜷 𝛼 2 𝑕(π’š) βˆ’1 𝛼𝑕 π’š  𝛽 : Step size, usually decided by linesearch, typical value is 1.  𝛼 2 𝑕 π’š : Hessian Matrix, 𝑡/β„Ž 2 + 𝛼 2 𝐹(π’š) π’š βˆ— = π’š βˆ’ (𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š

  11. Quasi-Newton Formulation π’š βˆ— = π’š βˆ’ 𝛽(𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š 𝛽 = 1 Projective Dynamics: A Quasi Newton method applied on a special type of energy

  12. Supporting More General Materials π’š βˆ— = π’š βˆ’ 𝛽(𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š This quasi-Newton formulation can be used for any hyperelastic material, but: We need to do line-search β€’ 𝛽 = 1 only works for Projective Dynamics β€’ We need to define the proper weights π‘₯ 𝑗 β€’ 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ

  13. Strain-Stress Curve for PD 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ π‘₯ π‘˜ Stress Strain

  14. Supporting More General Materials 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ Stress π‘₯ π‘˜ Strain

  15. Supporting More General Materials

  16. Quasi-Newton Algorithm Compute Gradient

  17. Quasi-Newton Algorithm Evaluate Descent Direction

  18. Quasi-Newton Algorithm Line Search

  19. Quasi-Newton Algorithm

  20. We can do more

  21. L-BFGS Acceleration Projective Dynamics Quasi-Newton Method Exact Solution

  22. L-BFGS Acceleration Quasi-Newton Projective Dynamics Method

  23. Core of Quasi-Newton Methods βˆ’1 βˆ†π’š = βˆ’ 𝑩 𝛼𝒉 π’š 𝑡 𝒉 π’š π’Š πŸ‘ + 𝑴 π’š

  24. L-BFGS with rest-pose Hessian

  25. L-BFGS with rest-pose Hessian

  26. L-BFGS with Scaled Identity

  27. L-BFGS with updating Hessian

  28. Performance of L-BFGS family

  29. Results: Accuracy

  30. Results: Robustness

  31. Results: Collision

  32. Results: Anisotropy

  33. Results: Spline-Based Materials

  34. Remark  Our method is:  General: supports a variety types of hyperelastic materials  Fast: >10x faster compared to Newton’s method to achieve similar accuracy level  Simple: avoids Hessian computation, avoids definiteness fix Simple

  35. Towards Real-time Simulation of Deformable Objects: Generalization of Spatial Discretization Models Fast Mass Projective Spring System Dynamics

  36. Towards Real-time Simulation of Deformable Objects: Generalization of Material Models + Acceleration Projective Quasi-Newton Dynamics Methods

  37. Towards Real-time Simulation of Deformable Objects: What’s Next? Quasi-Newton ? Methods

  38. Core of Our Methods βˆ’1 βˆ†π’š = βˆ’ 𝑡 π’Š πŸ‘ + 𝑴 𝛼g(𝐲) 𝑡 Γ— π’Š πŸ‘ + 𝑴 =

  39. Core of Our Methods βˆ’1 βˆ†π’š = βˆ’ 𝑡 π’Š πŸ‘ + 𝑴 𝛼g(𝐲) Γ— =

  40. Time Varying Events  Collisions  Tearing or Cutting Γ—

  41. Collisions

  42. Collisions

  43. Collision: Soft Constraint π‘œ 𝑦 𝑑 𝑦 𝑙 π‘‘π‘π‘š 2 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓

  44. Collision: Soft Constraint 𝑙 π‘‘π‘π‘š 2 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ π‘œ 𝑙 π‘‘π‘π‘š , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 𝛼𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓 𝑙 π‘‘π‘π‘š π‘œπ‘œ π‘ˆ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 𝛼 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓

  45. Quasi-Newton Algorithm with Collisions 𝛼𝐹 π‘‘π‘π‘š 0 𝐹 π‘‘π‘π‘š

  46. Tearing

  47. Tearing

  48. Tearing

  49. Tearing

  50. Tearing

Recommend


More recommend