Remark: Projective Dynamics 2 πΌ π β π π πΉ π = min π₯ π π― π πββ³ π 1 + 1 π¦ β π§ π π΅ π¦ β π§ 2 π’π π π π΄π β π’π π π π²π + π· min 2β 2 π’π π¦ββ πΓ3 ,πβπ ο΅ Like before, π΅, π΄, π², π does not depend on π and π ο΅ If we fix π -> easy to solve for π : Projection β1 ο΅ If we fix π -> easy to solve for π : π β = π΅ π΅ β 2 + π΄ β 2 π + π²π
Limitation: Projective Dynamics 2 πΌ π β π π πΉ π = min π₯ π π― π πββ³ π πΈππ‘ππ ππ’π πβπππ πΈππ‘ππ πππ’ππ β ππ πππππ’πππ 2 Special Requirement for the Energy Representation
More Materials? Soft ARAP Stiff ARAP
Spline-Based Materials [Xu et al. 2015] Polynomial Soft ARAP Stiff ARAP Material [Xu et al. 2015]
Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Tiantian Liu, Sofien Bouaziz, Ladislav Kavan ACM Transactions on Graphics 36(3) [Presented at SIGGRAPH],2017.
Reformulation of Projective Dynamics 1 + 1 π¦ β π§ π π΅ π¦ β π§ 2 π’π π π π΄π β π’π π π π²π + π· min 2β 2 π’π π¦ββ πΓ3 ,πβπ 1 + 1 2 π’π π π π΄π β π’π π π π²π(π) + 1 π¦ β π§ π π΅ π¦ β π§ 2 π’π π(π) πΌ π»π(π) min 2β 2 π’π π¦ββ πΓ3 π(π)
Reformulation of Projective Dynamics 1 + 1 2 π’π π π π΄π β π’π π π π²π(π) + 1 π¦ β π§ π π΅ π¦ β π§ 2 π’π π(π) πΌ π»π(π) min 2β 2 π’π π¦ββ πΓ3 π(π) πΌπ π = π΅ β 2 π β π + π΄π β π²π π + ππ π : (π»π π β π² πΌ π) ππ 0
Projection Differential π― πΌ π 2 = π― πΌ π β π π π π π― πΌ π β π π π― πΌ ππ π(π) βππ π π π― πΌ π β π π ππ π
Reformulation of Projective Dynamics 1 + 1 2 π’π π π π΄π β π’π π π π²π(π) + 1 π¦ β π§ π π΅ π¦ β π§ 2 π’π π(π) πΌ π»π(π) min 2β 2 π’π π¦ββ πΓ3 π(π) πΌπ π = π΅ β 2 π β π + π΄π β π²π π + ππ π : (π»π π β π² πΌ π) ππ β1 π΅ ( π΅ π΅ β 2 + π) β1 πΌπ π = π β β 2 + π΄ β 2 π + π²π π β = π β (π΅/β 2 + π΄) β1 πΌπ π π β
Reformulation of Projective Dynamics Compare to one Newton step: π β = π β π· πΌ 2 π(π) β1 πΌπ π ο΅ π½ : Step size, usually decided by linesearch, typical value is 1. ο΅ πΌ 2 π π : Hessian Matrix, π΅/β 2 + πΌ 2 πΉ(π) π β = π β (π΅/β 2 + π΄) β1 πΌπ π
Quasi-Newton Formulation π β = π β π½(π΅/β 2 + π΄) β1 πΌπ π π½ = 1 Projective Dynamics: A Quasi Newton method applied on a special type of energy
Supporting More General Materials π β = π β π½(π΅/β 2 + π΄) β1 πΌπ π This quasi-Newton formulation can be used for any hyperelastic material, but: We need to do line-search β’ π½ = 1 only works for Projective Dynamics β’ We need to define the proper weights π₯ π β’ π΅/β 2 + π π₯ πΌ β’ π π― π π― π
Strain-Stress Curve for PD π΅/β 2 + π π₯ πΌ β’ π π― π π― π π₯ π Stress Strain
Supporting More General Materials π΅/β 2 + π π₯ πΌ β’ π π― π π― π Stress π₯ π Strain
Supporting More General Materials
Quasi-Newton Algorithm Compute Gradient
Quasi-Newton Algorithm Evaluate Descent Direction
Quasi-Newton Algorithm Line Search
Quasi-Newton Algorithm
We can do more
L-BFGS Acceleration Projective Dynamics Quasi-Newton Method Exact Solution
L-BFGS Acceleration Quasi-Newton Projective Dynamics Method
Core of Quasi-Newton Methods β1 βπ = β π© πΌπ π π΅ π π π π + π΄ π
L-BFGS with rest-pose Hessian
L-BFGS with rest-pose Hessian
L-BFGS with Scaled Identity
L-BFGS with updating Hessian
Performance of L-BFGS family
Results: Accuracy
Results: Robustness
Results: Collision
Results: Anisotropy
Results: Spline-Based Materials
Remark ο΅ Our method is: ο΅ General: supports a variety types of hyperelastic materials ο΅ Fast: >10x faster compared to Newtonβs method to achieve similar accuracy level ο΅ Simple: avoids Hessian computation, avoids definiteness fix Simple
Towards Real-time Simulation of Deformable Objects: Generalization of Spatial Discretization Models Fast Mass Projective Spring System Dynamics
Towards Real-time Simulation of Deformable Objects: Generalization of Material Models + Acceleration Projective Quasi-Newton Dynamics Methods
Towards Real-time Simulation of Deformable Objects: Whatβs Next? Quasi-Newton ? Methods
Core of Our Methods β1 βπ = β π΅ π π + π΄ πΌg(π²) π΅ Γ π π + π΄ =
Core of Our Methods β1 βπ = β π΅ π π + π΄ πΌg(π²) Γ =
Time Varying Events ο΅ Collisions ο΅ Tearing or Cutting Γ
Collisions
Collisions
Collision: Soft Constraint π π¦ π‘ π¦ π πππ 2 π¦ β π¦ π‘ π π , ππ π¦ β π¦ π‘ π π < 0 2 πΉ πππ = 0 , ππ’βππ π₯ππ‘π
Collision: Soft Constraint π πππ 2 π¦ β π¦ π‘ π π , ππ π¦ β π¦ π‘ π π < 0 2 πΉ πππ = 0 , ππ’βππ π₯ππ‘π π¦ β π¦ π‘ π π π π πππ , ππ π¦ β π¦ π‘ π π < 0 πΌπΉ πππ = 0 , ππ’βππ π₯ππ‘π π πππ ππ π , ππ π¦ β π¦ π‘ π π < 0 πΌ 2 πΉ πππ = 0 , ππ’βππ π₯ππ‘π
Quasi-Newton Algorithm with Collisions πΌπΉ πππ 0 πΉ πππ
Tearing
Tearing
Tearing
Tearing
Tearing
Recommend
More recommend