topological order in the color flavor locked phase of 3 1
play

Topological order in the color-flavor locked phase of - PowerPoint PPT Presentation

Topological order in the color-flavor locked phase of (3+1)-dimensional U ( N ) gauge-Higgs system Ryo Yokokura (KEK) 2019. 8. 19 Strings and Fields 2019 @ YITP Based on Y. Hidaka, Y Hirono, M. Nitta, Y. Tanizaki, RY, 1903.06389 v v v


  1. Topological order in the color-flavor locked phase of (3+1)-dimensional U ( N ) gauge-Higgs system Ryo Yokokura (KEK) 2019. 8. 19 Strings and Fields 2019 @ YITP Based on Y. Hidaka, Y Hirono, M. Nitta, Y. Tanizaki, RY, 1903.06389

  2. v v v <latexit sha1_base64="hnMbFVtNdRtDXPqv/E2K32Tz5A=">AN5nicnVfNbtNAEJ7yWwqhLVyQuFiUIhCobFIkChJSpQrEASRaWv6aqrKdTWLiOK7tpClueAOHJAQBy6AxAHxAlyBCy/AoY+AOILEhQOz4784pV6DrcTjb2e+nZ2ZnU02zRcj7GtoV279+zdt3/4wMjBQ4XDo2PjR+64rbaj8yW9Zbace5rqctOw+JneCa/ZztcbWomv6s15sT43Q53XKNlLXobNl9pqjXLqBq6iG0OnZOuaKUedcuVx2/VLYNxVAaPX+6cbYU8qGpZQ1zX/QWw2Q1bEJNsXoUrYLxVCYgPC61RrfNw9lqEALdGhDEzhY4KFsgou3stQBAY2YivgI+agZNA4hx6MoG0btThqIg28LuGb8shauG74HTJWsdZTPw4aKnAJPvK3rEf7At7z76x3zty+cQhfNnApxbYcnt19Mmx27+kVk18elBPrDJ9qAKM+Srgb7bhIhV6IF959GLH7cvL0z6p9gb9h39f82GdcgdX5qb+d5wsvkX0SFuB+hl/dVByEnoX4OqFN8tfCfPiI1CD0/w9ehe+dCk7kf0yXIdFuAk3yGeG9wze4tmTcGvI0KYc5mUW9zW8ZcwdjF2L6sPbkd0f0MpmrKnD1E/n69zeAtfxVPO7ISsQlIpz1n6oj56sZTHoJ+i8wHVufo20ENpW9E4NksJtVj4y8syYichdNqxY4WcboKazAFjwlfo0qrIjqBo7KoCR53gMn9T641jORaH5dA2jhe6ct0xJSMybIkOo7XxypQWb0EuyaPzx3EOymfTVqxR5LQqxGiEJtCuTIQq5OG06eRPU8j3B3RPJt9kcjPopFu2tvENmLclMbUgfT+80Ms265OyRtV8da0fEj71FaBt18QDJsrForZGk0VplHtp0PiSySmeg0AsHerBO/nYC59q3M+z9CuhvjhxPYlnNmkvQynMW9RxgrHoLFZxjcle+/tYicZkvXDn2SpoYyKjitWcnmtwJM9MblxLnULWRw06jaBJPZwJf4tIN5k/bcae5qvYwecgdShXhf0WNk+a8d2bcLyW1bCzrw9d7JTIaq+qP9k6zuxftKP5BV7emCO0zlszmyb54y0JvQ4BtFujzDZbEFeGwPWCZod+1pcH+I0roW5yLJZRzax4Fcy9GFm9j9BiMpcI7Wokr80HMRs26OMzjh4yGatv+X6DdRp5s6IwJ/kxMsmi+7g7hUs/2nbgtvlfZBjdZYpswYiJzvk8uUafE5STOejLsI/ZrGfzXFwf8w24U7pani9FRp/sLE7KXw/80wHIcTGOciXIRZPVvwRLO8gw+wEf4VKgXnhaeF14EqruGQpujkLoKr/4AtwXVSw=</latexit> Overview of this talk = exp 2 π ik 3 k + 1 ∈ Z 3 k +1 (for N = 3 ) Color-flavor locked phase of a U ( N ) gauge theory with N -Higgs fields is topologically ordered if the Higgs fields have non-trivial U (1) charge k . • Non-Abelian vortex and Wilson loop have a Z Nk +1 fractional linking phase. • There are Z Nk +1 1- and 2-form symmetries , and both of them are spontaneously broken.

  3. 1 Introduction 2 Topological order in Abelian Higgs model 3 Topological order in CFL phase of U ( N ) gauge-Higgs system

  4. Higgs phase of gauge theories • Massive gauge fields • Some Nambu–Goldstone (NG) bosons are eaten • Admitting extended objects e.g. vortex • Vortex in many contexts: • magnetic vortex in superconductor (SC), • (local) cosmic strings in cosmology Higgs phases can be further classified by “topological order”

  5. v v v <latexit sha1_base64="V16IAtXlGEcYJ1ltcp0RJKnTJrw=">AN3XicnVe9b9NQEL/yWQqhfCxILBalCQUXgISHxISUgViAKktlAJFdnOS2riOK7thIAbNgYQYu3ABIDYmCFmYV/gIE/ATGCxMLAvfNXnDZ+Bj85Pt+7+929u3v3Ys02Ddj7NvEtu07du7aPblnau+wv7pAwcP3XE7XUfnS3rH7Dh3NdXlpmHxJc/wTH7Xdrja1ky+rLXmxPxyjzu0bFue49svtJWm5bRMHTVQ1btwIxyWanyvl1tOH65ahuKoQz81kCpGpZS1T/qDWQilWZHQpm4lSMxAeM13Du5agCrUoQM6dKENHCzwkDZBRdHBUrAwEbeCvjIc5AyaJ7DAKZQt4tSHCVU5Lbwt4lvlZBr4bvAdElbRysm3g5qKjDLvrJ37Cf7wt6z7+zPWCyfMIQvj/CpBbrcrk0/P3Lrt1SrjU8PVhOtTJ89aMAF8tVA323iFXogX7v8cbPW5cWZ/0T7A37gf6/Zt/YZ1yB1fulv13gi68QfRYW4V6GX/1UHISchfyHxG2Tvxbmw0d+EyU42R/Qu/ClT9mJ9CtwHW7DTbhBPjMcF3CI50CrSFCl3KYF1mMazhkyD2MXYfqwxuL7o9IZSM20NMHKJ/P1zkcwlfxlCM7IaqgVMpzlryoj0FM5dGo98i84HWafp1UEIZmhH8bBST6rG1BUoyI0fhtFqxo0WcrsIaFOEJ8deo0hrIncFZWdQEjuC5P4n1hpGcm0IS3C6OF8fynSElMzJsiQ6jeEKriyegl2TR6fe8jvpXw2acUeUKuSRyF0BTKlYG8VZJwhiSy7bTC3RHZWR+KRH4UjWT3ia6EeK6NKYOpPefH/Ky9VZph6T1VrFWdLzlPUoLdaMuHnCydCxa0RptFaZhzadDwmt0hko5AJNh3rwOB8H4VON+3mWfD2UFyeuJ/HMJukKlMO8R0nmIvOYhXmOy1refKNCfrheOt1VHREQVqzlta3QmjyU3riWXuoUsDhp1m4ASe7ge/xcQb7L+24g9zdexA8yA6lGvC3qsbJ91Y70u8fJr1sPOvDl3slMhqr6o/2TLO7F80o/kFXtyxMbJHDqnNtk5Ja0JPY5BtNsjnsxakNfWiHbCzY59M64PcRo3w1xk6TxEfrSPA7qZowu3sfuNRlLwOWqLKvFDz0XM+jnO4ASPh9y0/r9Ev40y/dQZEfibnGCRvewO4lLNDp+6HRwq7YMmrbFKmTGQc2aIrlKmxX2cLB6Puwj9m8avmtLoN8xm4k65WDpbLC+cm7lyMfy+mYSjcAzjXILzcAVP/XlYQivP4AN8hE+FWuFp4UXhZSC6bSLUOQypq7DxFya10nA=</latexit> Topological order [ Wen ’89, ’91 ] = exp 2 π i ∈ Z k k Classification of phases by topology of non-local order parameters • Order parameters: Wilson loop, vortex surface,... • New classification e.g. SC ̸ = charge 1 Abelian Higgs A characterization of the topologically ordered phase 1. Non-zero VEV of non-local order parameters 2. Fractional linking phases between non-local operators Is topological ordered phase related to symmetry breaking?

  6. v v <latexit sha1_base64="grjEJdc/fPgSKUhc4SVL2jOb0K4=">ANznicnVdLb9NAEB5eBQqB8jgcYloi4qEyiYg8ZCQKiEQB5DaQh+oKZXtbFITx3FtJ7S4hiviD3DgAkgcCj+DC3+Az8BcSwSFw7Mjt8J8Rq8cjyenflmdmZ2NlYtQ3dcxr7t2btv/4GRg4cOjx45Wjp2fOzEyUWn07U1vqB1jI69rCoON3STL7i6a/Bly+ZKWzX4ktq6JeaXetx29I750N2y+GpbaZp6Q9cUF1lrY6dvlvljr9awvWrN0su67V8f21snE0zusqDRCUkxiG8ZjsnRuagBnXogAZdaAMHE1ykDVDAwbECFWBgIW8VPOTZSOk0z8GHUdTtohRHCQW5Lfxt4tKyDXxXWA6pK2hFQNvGzXLMm+sh2y76wT+w7+z0UyM4csWPtVAl1trx1+defBLqtXGpwvriVauzy404Br5qPvFnHEKrRAv/fs9e6DG/OT3n2nv1A/9+xb+wzrsDs/dQ+zPH5N4g+CfPwKMevzUwchJyJ/KfEbZO/JubDQ34TJTjZ9+ld+LJ2Yn0V+AuPIT7cI98Zjiu4RBPX4KtIkKXclgUWYw7OGTIPYxdh+rDHYru9UnlIzbQ0ycoX8zXWziEr+IpR7ZDVEplOc8eVEfkwV0aij3yLzgdZF+rVRopyaEfx8FIPqsfUXlGRGjsJptWJHizjdhg2YhufE36BKayB3HGdlURM4Th+S859YGxjJjRSW4HRxvp7KdISUzMmyJDqOm0IVXFm9BLumiM895PcyPhu0YpcoIdckTpnQypQrHXnrJGnJPLtMLdEdnZTkWiOIpKslvE90IcVsaUxuy+8Lefl67RDsnrWCsa3vIepYa6URcPOHk6Jq01olRaq8xDi86HhFboDBRygaZNPXiYj374VOJ+nidfD+XFietKPLNIegWqYd6ijhPMRWexgmtM9trf56o0J+uFw63VUcdARAWrOWurf6aIJSeuJYe6hSwOKnWbgBJ7uB7/FxBvsv7biD0t1rEDzIDqUa8Leqxsn3VjvS7ximvWw848mDvZqRBVX9R/8uXtWD7pR/KneqzMVA58KAnQvSmtDiGES7PeLJrAV5bfVpJ9z82Dfj+hCncTPMRZ7OU+RH+zigmwW6cBu7X38kBZ+jtqgSL/RcxGyzwBmc4PGQm9X/l+i3UWYzc0YE/iYnWGQv4M4VLPpU7eDQ6F90KQ1igzOnIupegaZVrcE2RxIu4i9G8av2oq/d8wg8Ridbpyebo6d2V85nr4fXMIzsI5jHMFrsIMnvqzsIBWnsFb2IGPpdlSr+SXgSie/eEOqcgc5Ve/gHlR8z9</latexit> v v v <latexit sha1_base64="grjEJdc/fPgSKUhc4SVL2jOb0K4=">ANznicnVdLb9NAEB5eBQqB8jgcYloi4qEyiYg8ZCQKiEQB5DaQh+oKZXtbFITx3FtJ7S4hiviD3DgAkgcCj+DC3+Az8BcSwSFw7Mjt8J8Rq8cjyenflmdmZ2NlYtQ3dcxr7t2btv/4GRg4cOjx45Wjp2fOzEyUWn07U1vqB1jI69rCoON3STL7i6a/Bly+ZKWzX4ktq6JeaXetx29I750N2y+GpbaZp6Q9cUF1lrY6dvlvljr9awvWrN0su67V8f21snE0zusqDRCUkxiG8ZjsnRuagBnXogAZdaAMHE1ykDVDAwbECFWBgIW8VPOTZSOk0z8GHUdTtohRHCQW5Lfxt4tKyDXxXWA6pK2hFQNvGzXLMm+sh2y76wT+w7+z0UyM4csWPtVAl1trx1+defBLqtXGpwvriVauzy404Br5qPvFnHEKrRAv/fs9e6DG/OT3n2nv1A/9+xb+wzrsDs/dQ+zPH5N4g+CfPwKMevzUwchJyJ/KfEbZO/JubDQ34TJTjZ9+ld+LJ2Yn0V+AuPIT7cI98Zjiu4RBPX4KtIkKXclgUWYw7OGTIPYxdh+rDHYru9UnlIzbQ0ycoX8zXWziEr+IpR7ZDVEplOc8eVEfkwV0aij3yLzgdZF+rVRopyaEfx8FIPqsfUXlGRGjsJptWJHizjdhg2YhufE36BKayB3HGdlURM4Th+S859YGxjJjRSW4HRxvp7KdISUzMmyJDqOm0IVXFm9BLumiM895PcyPhu0YpcoIdckTpnQypQrHXnrJGnJPLtMLdEdnZTkWiOIpKslvE90IcVsaUxuy+8Lefl67RDsnrWCsa3vIepYa6URcPOHk6Jq01olRaq8xDi86HhFboDBRygaZNPXiYj374VOJ+nidfD+XFietKPLNIegWqYd6ijhPMRWexgmtM9trf56o0J+uFw63VUcdARAWrOWurf6aIJSeuJYe6hSwOKnWbgBJ7uB7/FxBvsv7biD0t1rEDzIDqUa8Leqxsn3VjvS7ximvWw848mDvZqRBVX9R/8uXtWD7pR/KneqzMVA58KAnQvSmtDiGES7PeLJrAV5bfVpJ9z82Dfj+hCncTPMRZ7OU+RH+zigmwW6cBu7X38kBZ+jtqgSL/RcxGyzwBmc4PGQm9X/l+i3UWYzc0YE/iYnWGQv4M4VLPpU7eDQ6F90KQ1igzOnIupegaZVrcE2RxIu4i9G8av2oq/d8wg8Ridbpyebo6d2V85nr4fXMIzsI5jHMFrsIMnvqzsIBWnsFb2IGPpdlSr+SXgSie/eEOqcgc5Ve/gHlR8z9</latexit> p -form global symmetries & their breaking [ Banks & Seiberg ’10; Kapustin & Seiberg ’14; Gaiotto et al. 14 ] 2 π i 2 π i k k = e = e Symmetry under transf. of p -dim. extended objects • Charged objects: Wilson loop, vortex surface, ... → topological order parameters can be charged objects • Example: phase rotation of a Wilson loop (1-form sym.) • Symmetry breaking: non-zero VEV of charged objects

  7. Topological order & p -form symmetry [ Banks & Seiberg ’10; Kapustin & Seiberg ’14; Gaiotto et al. 14 ] Topologically ordered phase can be characterized by 1. p -form symmetry and their breaking 2. Fractional linking phases between non-local operators In this talk, we consider the possibility of topologicaly ordered phase in 3 + 1 dim. non-Abelian gauge theories in order to understand phases of non-Abelian gauge theories.

  8. Topological order in Abelian Higgs model Review based on Hansson, et al. 04,; Banks & Seiberg ’10; Seiberg & Kapustin ’14; Gaiotto, et al. ’14

Recommend


More recommend