Strong correlation effects in 2D topological quantum phase transitions Adriano Amaricci IOM Frontiers in 2D Quantum Systems, ICTP Trieste Wuerzburg Dresden G.Sangiovanni B.Trauzettel J. Budich M.Capone
Introduction. Ginzburg-Landau theory: s ymmetry breaking classification of matter phases key concept: local order parameter Magnetism Liquid-gas “Superconductivity” magnetization M density difference n(L)-n(G) pair amplitude ψ Experimental detectability!
Haldane PRL88 Introduction. Kane,Mele PRL05 Bernevig et al Science 2006 …. many more TOPOLOGICAL INSULATORS quantum materials eluding the G-L paradigm! bulk (band) insulator + with gapless edge modes. Dirac semi-metal + Spin-Orbit Coupling + = States classified in terms of the Topological Properties of the Hilbert space of Bloch functions : Trivial Non-Trivial key concept: global topological invariant
The quantum spin-Hall insulator Initial focus on graphene but small SOC ( gap ~ 10 -3 meV ) Kane,Mele PRL 2005 Bernevig et al Science 2006 Idea : look for systems with a larger SOC. Konig et al Science 2007 BHZ model : 2 QHI + Time Reversal Symmetry. CdTe/HgTe quantum wells . P 3/2 S h ( k ) = d ( k ) · τ Orbital pseudo-spin structure S P 3/2 P 1/2 P 1/2 d ( k )=[ λ sin k x , λ sin k y , M − ε ( k )]
Topological QPT 𝒟 1 =0 BHZ description of topological transition: h ( k ) = d ( k ) · τ spin texture M> 2 d ( k ) Continuous Topological Quantum Phase Transition band structure evolves smoothly with control parameters… 6 4 2 trivial 0 band insulator M< 2 M=2 M> 2 -2 -4 -6 M X
Topological QPT 𝒟 1 =0 BHZ description of topological transition: h ( k ) = d ( k ) · τ spin texture M> 2 d ( k ) Continuous Topological Quantum Phase Transition band structure evolves smoothly with control parameters… 4 3 2 Dirac cone 1 semi-metal 0 -1 M< 2 M=2 M> 2 -2 -3 -4 M X
Topological QPT 𝒟 1 =1 𝒟 1 =0 BHZ description of topological transition: h ( k ) = d ( k ) · τ spin texture M< 2 M> 2 d ( k ) Continuous Topological Quantum Phase Transition band structure evolves smoothly with control parameters… 3 2 1 band inversion 0 QSH insulator M< 2 M=2 M> 2 -1 -2 -3 M X
What about the interaction? Quest for larger SOC…heavy elements compounds ( 5d/4,5f ) Hexaborides Sm/Pu B 6 , Magnetic Order Ir-based pyrochlores: Sr 2 Ir 2 O 7 , etc.. Mott Dzero et al. PRL 2010 U D. Pesin, L. Balents, NP 2010 Hohenadler , Assad. Journal of Phys. 2013 Topological Mott Ins. Deng et al PRL 2013 “Simple” Topological Band Ins. New materials? Materials SOC Engineering correlated TI: Transition Metal Oxides Heterostructures D. Xiao et al. Nat. Comm. 2011 LaAuO 3
DMFT solution Dynamical Mean-Field Theory non-perturbative solution of the interacting problem Idea: Reduce the interacting lattice problem to a self-consistent impurity problem Impurity solver Advantages: + local quantum physics (beyond Hartree-Fock) . Imaginary time + non-perturbative in the interaction + access to topological invariant DMFT Drawbacks: - neglects spatial fluctuations - computational demanding… Lattice problem Impurity problem Self-consistency solve using Exact Diagonalization & CTQMC Obtain dynamical (non-scalar) self-energy. Describes the effects of interaction.
BHZ - Interaction AA et al PRL 2015 AA et al PRB 2016 BHZ effective minimal model + multi-orbital interactions LOW-SPIN HIGH-SPIN ✓ N 2 4 + S 2 ◆ H I = ( U − J H ) N ( N − 1) z 2 − 2 T 2 − J H z Vs 2 M M eff M e ff = M + Tr[ τ z ˆ Σ (0)] / 2 Effective reduction of the Mass term: 0 M > 2 M=2.5 M-2W -0.2 Hartree-Fock Interaction driven TI CORRELATED TI M eff < 2 Top. Ins. Re Σ (i ω ) -0.4 M eff = M c U=3.30 Trivial -0.6 U=3.40 U=3.50 Mott Ins. U=3.60 Mott phase at large U U U=3.70 -0.8 QSHI U=3.80 U=3.90 Mott Ins. U=4.50 Mott U=7.24 -1 0 10 20 30 ω n
Correlated QSHI AA et al PRL 2015 Phase diagram M-U ( flipped view). Weak coupling: Continuous ~ U=0 0.5 10 (a) Topological Insulator 0.45 Uncorrelated Σ (0)] / 2 topological transition r o [HgTe/CdTe quantum wells] t correlation strength. a 0.4 l u Σ HF − τ z ˆ s n 1 I 1/M t t 0.35 o M Tr[ τ z ˆ Quantum Critical Point 0.3 Band Insulator 0.25 0.1 Triple point 0.2 0.1 0.2 0.3 0.4 1/U Strong coupling: 1 st order TQPT correlated many-body character
Correlated QSHI AA et al PRL 2015 Metastable states hallmark of 1 st transition. h H i U 0.40 4.0 5.0 0.38 5.5 5.7 5.9 0.36 6.1 A clear picture from the iso- U curves 6.3 0.34 ∆ M e ff = M e ff ( BI ) − M e ff ( QSH ) 6.5 6.7 0.32 7.0 1 (a) 1.8 2.0 2.2 1.6 0.9 Diverging orbital compressibility at U=U c U=5.5 U=5.9 κ = ∂ h T z i / ∂ M U=6.0 U=6.1 0.8 U=6.2 Experimental accessible quantities marking U=6.3 U=6.8 the TQPT. 2.7 2.8 2.9 3 3.1 M
Absence of gap closure AA et al PRL 2015 AA et al PRB 2016 Breakdown of the gap-less TQPT paradigm… Weak Coupling Strong Coupling M=4.560 M=3.22 0.08 U=2 U=11 M=4.561 M=3.23 M=4.562 M=4.563 M=3.24 M=4.564 M=4.565 M=3.251 0.06 M=4.566 0.1 M=3.26 M=4.567 M=4.568 M=3.27 P(k) P(k) M=4.569 M=3.28 0.04 0.05 0.02 Dirac Cone Gap! 0 0 Γ Γ k k U>U c U<U c No gap-closing The transition to a topological state occurs thru band-gap closing. No suppression of any symmetries Dirac cone formation. protecting the topological state.
Correlated edge states AA et al. PRB 2017 Consider a 2D stripe. ⇣ ⌘ X X Ψ + Ψ + k x y M ( k x ) δ yy 0 Ψ k x y 0 + 1 y 0 Ψ k x y 0 + H.c. H = k x y T δ y + k x yy 0 k x yy 0 M =[ M − 2 t cos k x ] Γ 5 + λ sin k x Γ x π T = − t Γ 5 + i λ 2 Γ y 0 k x - π N y 3 2 Helical gapless states localized 1 at the edges. E(k x ) 0 What’s the effects of strong -1 correlation on the 2D stripe? -2 -3 −π 0 π k x
Correlated edge states AA et al. PRB 2017 Sequence of transitions to reach the Mott state. y=1 y=2 0.6 y=3 y=4 y=5 0.4 Z 0.2 k x N y 0.0 2.8 3.0 3.2 3.4 3.8 4.0 3.6 U U c1 U c2 …U c U Y=1
Correlated edge states AA et al. PRB 2017 What’s the fate of the edge states? Bulk compression —> Edge state reconstruction U<U c 1 U c 1 <U<U c 2 U c 2 <U<U c 3 10 1 Topological properties with OBC: U<U c1 U=3.62 0 Local Chern Marker C -10 U c 1 <U<U c 2 U=3.98 C σ ( r )=2 π i h r | ˆ P ˆ Q � ˆ P ˆ Q | r i x σ y σ y σ x σ Gapped Edge GAPPED EDGE 10 Z 2 =( C ↑ − C ↓ ) / 2 U>U c U=4.42 0 x i M o t t ( t r i v i a l ) 50 40 30 20 -10 10 y i 1
Conclusions. AA et al. PRL 2015 • Topological States can be favoured by strong interaction. AA et al. PRB 2016 • Emergent thermodynamic character : 1 st order transition. • New paradigm for TQPT : no gap closing but no symmetry breaking! AA et al. PRB 2017 • Correlation driven edge states reconstruction. AA et al. in preparation 2017 Outlook… • Break TRS or IS: correlation effects in Weyl SM . • Interplay of strong interaction and SOC : from models to real materials. • Topological Mott Insulators . • Condensed matter realization of excitations beyond “standard model”
Recommend
More recommend