tiramisu black box simulation extractable nizks in the

Tiramisu : Black-Box Simulation Extractable NIZKs in the Updatable - PowerPoint PPT Presentation

Tiramisu : Black-Box Simulation Extractable NIZKs in the Updatable CRS Model Karim Baghery 1,2 and Mahdi Sedaghat 1 1 imec-COSIC, KU Leuven, Leuven, Belgium 2 University of Tartu, Tartu, Estonia. karim.baghery@kuleuven.be


  1. Tiramisu : Black-Box Simulation Extractable NIZKs in the Updatable CRS Model Karim Baghery 1,2 and Mahdi Sedaghat 1 1 imec-COSIC, KU Leuven, Leuven, Belgium 2 University of Tartu, Tartu, Estonia. karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be ia.cr/2020/474 /4

  2. Overview on Tiramisu & ( Sub. / Upd. ) NIZKs in the CRS Model: [PHGR13] Witness w [BCG+15, ABL+19] (x,w) οƒŽ R L COCO [KZM+15 ] (CRS, TD) ← CRSGen ( 1 π‘œ , R L ) [Gro16] (stat, proof) [BFS16] proof ← Prove (CRS, stat, witness) { 1 , 0 } ← Verify (CRS, stat, proof) [ABLZ17] [Fuc18] U-nBB-SE U-BB-SE Sub-ZK U-ZK U-ZK [GM17, AB19] [GKM+18] U-BB-KS BB-SE nBB-SE U-nBB-KS [Bag19a] ZK [Bag19b] nBB-KS BB-KS Lamassu Sub : Subversion | U : Updatable [ARS20] SND BB : Black-Box | nBB : non-Black-Box Tiramisu ZK : Zero-knowledge | SND : Soundness | KS : Knowledge Sound | SE : Simulation Extractable [BS20] 2 /4 COSIC (Computer Security and Industrial Cryptography group)

  3. Tiramisu: Building U-ZK and U-BB-SE NIZKs ( zk-SNARKs ) Tiramisu [BS20] Sub/U-ZK and U-nBB- U-ZK and U-BB-SE NIZK SE SNARK (e.g. [ARS20]) (SNARK) [Bag19a], [Bag19b], [ARS20] οƒ˜ Given a language 𝑴 with the NP relation 𝐒 𝑴 , define 𝑴′ s. t. ∈ 𝑺 𝑴 β€² iff: 𝑦, 𝑑, π‘žπ‘™ 𝑗 , π‘₯, 𝑠 𝑑 = πΉπ‘œπ‘‘(π‘žπ‘™ 𝑗 , π‘₯; 𝑠)) αˆ₯ 𝑦, π‘₯ ∈ 𝑺 𝑴 ο‚§ Ξ  enc ≔ KG, Enc, Dec is CPA secure public-key cryptosystem with updatable keys (pk i , sk i ) οƒ˜ Updatable public-key cryptosystems: can be constructed from key-homomorphic encryption schemes [AHI11] (a variation of El-Gamal [ElG84] instantiated in the pairing-based groups) ο‚§ Similar to updatable NIZK arguments [GKM+18] and updatable signatures [ARS20] ο‚§ 3 /4 COSIC (Computer Security and Industrial Cryptography group)

  4. Tiramisu in Comparison with Current Constructions:  Upd. BB Sim. Ext. & Upd- ZK NIZKs (SNARKs) [Tiramisu, BS20]  Upd. nBB Sim. Ext. & Sub - ZK SNARK [Lamassu, ARS20]  nBB Sim. Ext. & Sub- ZK SNARK [Bag19b, Lip19] BB Sim. Ext. NIZKs (zk-SNARK) [KZM+15, Bag19a]  nBB Sim. Ext. zk-SNARK [GM17, BG18, AB19]  nBB Knowledge Sound zk-SNARKs [e.g. Gro16]  4 /4 COSIC (Computer Security and Industrial Cryptography group)

  5. Thank You! karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be /4

  6. C βˆ… C βˆ… Framework : Building BB-SE NIZKs ( zk-SNARKs ) C βˆ… C βˆ… Framework (nBB Knowledge) Sound Black-Box Sim. Ext. NIZK (zk-SNARK) NIZK (zk-SNARK) [KZM+15] οƒ˜ Given a language 𝑴 with the corresponding NP relation 𝐒 𝑴 , defines a new language 𝑴′ such that ∈ 𝑺 𝑴 β€² iff: 𝑦, 𝑑, 𝜈, π‘žπ‘™ 𝑑 , π‘žπ‘™ 𝑓 , 𝜍 , π‘₯, 𝑠, 𝑠 0 , 𝑑 0 𝑑 = πΉπ‘œπ‘‘(π‘žπ‘™ 𝑓 , π‘₯; 𝑠)) αˆ₯ 𝑦, π‘₯ ∈ 𝑺 𝑴 ሧ 𝜈 = 𝑔 𝑑 0 π‘žπ‘™ 𝑑 αˆ₯ 𝜍 = 𝐷𝑝𝑛(𝑑 0 , 𝑠 0 ) ο‚§ πΉπ‘œπ‘‘ (.) is a semantically secure encryption scheme, Simulation Sound or Black-Box 𝑑 0 . : 0,1 βˆ— β†’ 0,1 πœ‡ is a PRF family, ο‚§ 𝑔 Extraction nBB Simulation Extractable ο‚§ 𝐷𝑝𝑛(. ) is a perfectly binding commitment scheme. οƒ˜ Used in several UC-secure protocols [Gro06]: Hawk [KMS+16], Gyges [JKS16], Ouroboros Crypsinous [KKKZ19], … 6 /4 COSIC (Computer Security and Industrial Cryptography group)

  7. [ Bag 19b , ARS 20]: Building Sub-ZK & nBB-SE / U-nBB-SE zk-SNARKs [Bag19b] Sub-ZK & nBB-SE Sub-ZK and nBB Knowledge Sound SNARK e.g. [ABLZ17, Fuc18] SNARK [BG90, KZM+15] οƒ˜ Given a language 𝑴 with the corresponding NP relation 𝐒 𝑴 , define a new language 𝑴′ such that ∈ 𝑺 𝑴 β€² iff: 𝑦, 𝑑, 𝜈, π‘žπ‘™ 𝑑 , π‘žπ‘™ 𝑓 , 𝜍 , π‘₯, 𝑠, 𝑠 0 , 𝑑 0 𝑑 = πΉπ‘œπ‘‘(π‘žπ‘™ 𝑓 , π‘₯; 𝑠)) αˆ₯ 𝑦, π‘₯ ∈ 𝑺 𝑴 ሧ 𝜈 = 𝑔 𝑑 0 π‘žπ‘™ 𝑑 αˆ₯ 𝜍 = 𝐷𝑝𝑛(𝑑 0 , 𝑠 0 ) [ARS20, Lamassu] Sub-ZK & U-nBB-SE Sub-ZK and Updatable nBB Knowledge Sound SNARK e.g. [GKM+18] SNARK [DS16, Bag19b] οƒ˜ Given a language 𝑴 with the corresponding NP relation 𝐒 𝑴 , defines a new language 𝑴′ such ∈ 𝑺 𝑴 β€² iff: that 𝑦, π‘‘π‘žπ‘™, π‘žπ‘™ , π‘₯, 𝑑𝑑𝑙 βˆ’ 𝑑𝑙 𝑦, π‘₯ ∈ 𝑺 𝑴 ሧ cpk = pk β‹… 𝜈(csk βˆ’ 𝑑𝑙) ο‚§ (cpk, csk) of a key-homomorphic signature pk, sk of a one-time secure signature ο‚§ ο‚§ 𝜈: SK β†’ 𝑄𝐿 (e.g. pk = 𝑕 sk ). 7 /4 COSIC (Computer Security and Industrial Cryptography group)

Recommend


More recommend