Tiramisu : Black-Box Simulation Extractable NIZKs in the Updatable CRS Model Karim Baghery 1,2 and Mahdi Sedaghat 1 1 imec-COSIC, KU Leuven, Leuven, Belgium 2 University of Tartu, Tartu, Estonia. karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be ia.cr/2020/474 /4
Overview on Tiramisu & ( Sub. / Upd. ) NIZKs in the CRS Model: [PHGR13] Witness w [BCG+15, ABL+19] (x,w) ο R L COCO [KZM+15 ] (CRS, TD) β CRSGen ( 1 π , R L ) [Gro16] (stat, proof) [BFS16] proof β Prove (CRS, stat, witness) { 1 , 0 } β Verify (CRS, stat, proof) [ABLZ17] [Fuc18] U-nBB-SE U-BB-SE Sub-ZK U-ZK U-ZK [GM17, AB19] [GKM+18] U-BB-KS BB-SE nBB-SE U-nBB-KS [Bag19a] ZK [Bag19b] nBB-KS BB-KS Lamassu Sub : Subversion | U : Updatable [ARS20] SND BB : Black-Box | nBB : non-Black-Box Tiramisu ZK : Zero-knowledge | SND : Soundness | KS : Knowledge Sound | SE : Simulation Extractable [BS20] 2 /4 COSIC (Computer Security and Industrial Cryptography group)
Tiramisu: Building U-ZK and U-BB-SE NIZKs ( zk-SNARKs ) Tiramisu [BS20] Sub/U-ZK and U-nBB- U-ZK and U-BB-SE NIZK SE SNARK (e.g. [ARS20]) (SNARK) [Bag19a], [Bag19b], [ARS20] ο Given a language π΄ with the NP relation π π΄ , define π΄β² s. t. β πΊ π΄ β² iff: π¦, π, ππ π , π₯, π π = πΉππ(ππ π , π₯; π )) α₯ π¦, π₯ β πΊ π΄ ο§ Ξ enc β KG, Enc, Dec is CPA secure public-key cryptosystem with updatable keys (pk i , sk i ) ο Updatable public-key cryptosystems: can be constructed from key-homomorphic encryption schemes [AHI11] (a variation of El-Gamal [ElG84] instantiated in the pairing-based groups) ο§ Similar to updatable NIZK arguments [GKM+18] and updatable signatures [ARS20] ο§ 3 /4 COSIC (Computer Security and Industrial Cryptography group)
Tiramisu in Comparison with Current Constructions: ο± Upd. BB Sim. Ext. & Upd- ZK NIZKs (SNARKs) [Tiramisu, BS20] ο± Upd. nBB Sim. Ext. & Sub - ZK SNARK [Lamassu, ARS20] ο± nBB Sim. Ext. & Sub- ZK SNARK [Bag19b, Lip19] BB Sim. Ext. NIZKs (zk-SNARK) [KZM+15, Bag19a] ο± nBB Sim. Ext. zk-SNARK [GM17, BG18, AB19] ο± nBB Knowledge Sound zk-SNARKs [e.g. Gro16] ο± 4 /4 COSIC (Computer Security and Industrial Cryptography group)
Thank You! karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be /4
C β C β Framework : Building BB-SE NIZKs ( zk-SNARKs ) C β C β Framework (nBB Knowledge) Sound Black-Box Sim. Ext. NIZK (zk-SNARK) NIZK (zk-SNARK) [KZM+15] ο Given a language π΄ with the corresponding NP relation π π΄ , defines a new language π΄β² such that β πΊ π΄ β² iff: π¦, π, π, ππ π‘ , ππ π , π , π₯, π , π 0 , π‘ 0 π = πΉππ(ππ π , π₯; π )) α₯ π¦, π₯ β πΊ π΄ α§ π = π π‘ 0 ππ π‘ α₯ π = π·ππ(π‘ 0 , π 0 ) ο§ πΉππ (.) is a semantically secure encryption scheme, Simulation Sound or Black-Box π‘ 0 . : 0,1 β β 0,1 π is a PRF family, ο§ π Extraction nBB Simulation Extractable ο§ π·ππ(. ) is a perfectly binding commitment scheme. ο Used in several UC-secure protocols [Gro06]: Hawk [KMS+16], Gyges [JKS16], Ouroboros Crypsinous [KKKZ19], β¦ 6 /4 COSIC (Computer Security and Industrial Cryptography group)
[ Bag 19b , ARS 20]: Building Sub-ZK & nBB-SE / U-nBB-SE zk-SNARKs [Bag19b] Sub-ZK & nBB-SE Sub-ZK and nBB Knowledge Sound SNARK e.g. [ABLZ17, Fuc18] SNARK [BG90, KZM+15] ο Given a language π΄ with the corresponding NP relation π π΄ , define a new language π΄β² such that β πΊ π΄ β² iff: π¦, π, π, ππ π‘ , ππ π , π , π₯, π , π 0 , π‘ 0 π = πΉππ(ππ π , π₯; π )) α₯ π¦, π₯ β πΊ π΄ α§ π = π π‘ 0 ππ π‘ α₯ π = π·ππ(π‘ 0 , π 0 ) [ARS20, Lamassu] Sub-ZK & U-nBB-SE Sub-ZK and Updatable nBB Knowledge Sound SNARK e.g. [GKM+18] SNARK [DS16, Bag19b] ο Given a language π΄ with the corresponding NP relation π π΄ , defines a new language π΄β² such β πΊ π΄ β² iff: that π¦, πππ, ππ , π₯, ππ‘π β π‘π π¦, π₯ β πΊ π΄ α§ cpk = pk β π(csk β π‘π) ο§ (cpk, csk) of a key-homomorphic signature pk, sk of a one-time secure signature ο§ ο§ π: SK β ππΏ (e.g. pk = π sk ). 7 /4 COSIC (Computer Security and Industrial Cryptography group)
Recommend
More recommend