Thermo hydro mechanical coupling for underground waste storage simulations Clément Chavant - Sylvie Granet – Roméo Frenandes EDF R&D 1 december 20 , 2006 Journée Momas
Outline Underground waste storage concepts Main phenomena and modelisation Coupling Numerical difficulties Spatial discretisation for flows and stresses Simulation of the excavation of a gallery 2 december 20 , 2006 Journée Momas
Underground waste storage concepts (1/3) Alvéole CU Alvéole C 3 december 20 , 2006 Journée Momas
Underground waste storage concepts (2/3) C waste Cell Alvéole de déchet B B waste cell 4 december 20 , 2006 Journée Momas
Underground waste storage concepts (3/3) Complex geometry Heterogeneous materials Rock at initial state or damaged rock Concrete Engineered barriers (sealing, cells closure) Fill materials Gaps Steel : container liners Different physical behaviour Mechanical, thermal , chemical, hydraulic 5 december 20 , 2006 Journée Momas
Main phenomena and modelisation (1/2) Flows 2 components (air or H 2 and water ) in 2 phases (liquid and gaz) Transport equations : • Pressures Velocities p gz = p as p vp M gz M as M vp C vp = p gz p vp = 1 − C vp C vp ρ gz ρ as ρ vp p lq = p w p ad • Darcy + diffusion + phase change for each phase within each phase ( dissolution /vaporization ) dp vp dp w rel S lq m dT M vp M as m − h w = K int . k lq M lq −∇ p lq ρ lq g h vp = − =− F vp ∇ C vp ρ lq μ lq ρ vp ρ w T ρ vp ρ as = K int . k gz rel S lq M gz −∇ p gz ρ gz g ρ gz μ gz ρ ad p ad M ad − M w =− F ad ∇ ρ ad ¿ ol = { ¿ ¿¿ K H M ad ¿ • Sorption curve P c = f S lq = P gz − P lq 6 december 20 , 2006 Journée Momas
Main phenomena and modelisation (2/2) Mechanical behaviour Plastic and brittle behaviour or the rock Dilatance effect at rupture stage Deviatoric stress 60 50 40 30 20 10 Lateral strain Axial strain 0 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 Swelling of Engineered materials . 7 december 20 , 2006 Journée Momas
Numerical difficulties (1/3) For flows Non linear terms induce hyperbolic behaviour • Kind of equation : ∂ t − ∂ 2 u m ∂ u ∂ x 2 = 0 • Stiff fronts can appear m = 2 m 2 m 2 • Big capillary effect -> No « mean » pressure 8 december 20 , 2006 Journée Momas
Numerical difficulties (2/3) Example of a desaturation problem Initial state : Sat=0,7 Sat=1 Porosity=0,05 Porosity=0,3 Near desaturation transition zone gas pressure tends to zero Pression de gaz (VF_RE) Saturation (VF_RE) 1,40E+05 1 1,20E+05 0,95 1s 1s 1,00E+05 0,9 10s 10s Pgz(Pa) 8,00E+04 100s 0,85 100s S 6,00E+04 1000s 1000s 0,8 4,00E+04 5000s 5000s 0,75 2,00E+04 0,7 0,00E+00 -0,2 -0,1 0 0,1 0,2 -0,5 -0,3 -0,1 0,1 0,3 0,5 X X 9 december 20 , 2006 Journée Momas
Numerical difficulties (3/3) Instabilities due to brittle behaviour ~2,2 m ~1 m B Post peak damage γ e ≤ γ p ≤ γ ult Fractured rock 0 γ p ≤ γ e Pre peak damage σ 1 − σ 3 ≤ 0,7 σ 1 − σ 3 peak 10 december 20 , 2006 Journée Momas
Coupling (1/2) Incidence of flow on mechanical behaviour Standard notion of pore pressure Equivalent pore pressure definition for partially saturated media • Taking into account of interfaces in thermodynamic formulation π = S α p α − 2 1 3 ∫ S l p c S dS Incidence material deformation on flow Porosity change Straight increase of permeability with damage ? D F D M homogenization 11 december 20 , 2006 Journée Momas
Coupling (2/2) Thermal evolution -> Mechanic Thermal expansion Lower pressure values Thermal evolution -> flow Changes in Viscosity, diffusivity coefficients Flow, mechanic -> thermal evolution No effect 12 december 20 , 2006 Journée Momas
Numerical methods for flow Choice of principal variables Capillary pressure/gas pressure • Air mass balance ill conditioned for S=1 ∂ ρ a 1 − S −∇ ρ a k a S ∇ p a = 0 ϕ ∂ t Saturation/water pressure • Air mass balance becomes : ∂ p e ∂ t ϕ g S − p e ∂ S ∂ t −∇ [ p a h S ∇ S ] −∇ [ p a k a S ∇ p e ] = 0 ϕ 1 − S g S ≈ p c 0. 6 P c S ≈ A 1 − S At S=1 2,6 3 h S ≈ A 1 − S k a S ≈ 1 − S ∂ S We have = 0 ∂ t 13 december 20 , 2006 Journée Momas
Numerical methods for flow and mechanic : spatial discretisation Goals A stable, monotone method for flow Easy to implement in a finite element code Method 1 :pressure and displacement EF P2/P1 lumped formulation • OK for consolidation modelling Standard EF Lumped EF • OK for desaturation test (Liakopoulos) Saturation Air Pressure 14 december 20 , 2006 Journée Momas
Numerical methods for flow and mechanic : spatial discretisation Limitations of previous formulation Poor quadrature rule induces lack of accuracy in stresses evaluations Instabilities appear when simulating gas injection problem CFV/DM (control finite volume/dual mesh) Goal formulation VF compatible with architecture of EF software Principle • To use primal mesh for EF formulation of mechanical equations • To construct a finite volume cell surrounding each node of the primal mesh • To write mass balance on that polygonal cell K 15 december 20 , 2006 Journée Momas
CFM/DM (control finite volume/dual mesh) ∂ m u Model equation ∇ . F u ; F = k u ∇ u ∂ t Mass balance: n 1 − m K n 1 m K T KL k u n 1 u n 1 = 0 ∑ n 1 − u A K Δ t KL L K L K Up winding J H n 1 ¿ u n 1 u n 1 = u n 1 si u I L L K KL L Loop over elements of primal mesh n 1 − m K , p,e n e m K ,e e k u n 1 u n 1 = 0 ∑ ∑ e ∑ n 1 − u A T Δ t K KL KL L K e ∈ Τ K L ∈ e ≠ K d I ,H e = =− ∫ e ∇ λ K . ∇ λ K T d K, L KL 16 december 20 , 2006 Journée Momas
CFM/DM (control finite volume/dual mesh) Theoretical predictions : stable, convergent and monotone for Delaunay meshes Example H L Gas injection Pg 10 years H/L=1 S 10 years H/L=4/3 For stretching H/L > 4/3 no convergence is achieved 17 december 20 , 2006 Journée Momas
CFM/DM (control finite volume/dual mesh) Remark about interfaces Differences between material properties can induce discontinuities. It is better to ensure constant properties over the control cell OK No OK 18 december 20 , 2006 Journée Momas
Numerical modelisation of brittle rocks Equilibrium equation Mechanical law of behaviour σ = F , ε α Div σ f = 0 ∂ σ is not positive ∂ ε Resulting weak formulation σ ε u ¿ ∫ OMEGA f . u ¿ = 0 ∀ u ¿ ∫ OMEGA : •Lak of ellipticity •Possible bifurcations •Instabilities 19 december 20 , 2006 Journée Momas
Regularisation method Main idea : Introduce some term bounding gradients of strain Second gradient σ ε u ¿ ∫ OMEGA D . ∇ ε : ∇ ε ∫ OMEGA : ¿ ∫ OMEGA f . u ¿ = 0 ∀ u ¿ Simplified second gradient : micro gradient dilation model For a dilatant material we can regularise only the volumic strain σ ε u ¿ ∫ OMEGA D . ∇ Tr ε . ∇ Tr ε ¿ ∫ OMEGA f . u ∫ OMEGA : ¿ = 0 ∀ u ¿ ∫ OMEGA D . u ¿ Δ . u Δ 20 december 20 , 2006 Journée Momas
Mixed formulation of micro gradient dilation model Weak formulation ¿ , λ σ ε u ¿ ∫ OMEGA D . ∇ θ . ∇ θ ¿ − ∫ OMEGA λ ∇ . u ¿ ∫ OMEGA λ ¿ = 0 ∀ u ¿ ∫ OMEGA : ¿ ∇ . u − θ ∫ ¿ − θ OMEGA f . u λ θ u Approximation spaces Quadrangles Q2 Q1 P0 Triangles P2 P1 P0 Possible free energy displacements modes w ∫ OMEGA σ w : ε w = 0 ∫ e ∇ . w = 0 ∀ e Two ways λ Enhancing degree of discretisation for Using penalisation σ ε u ¿ ∫ OMEGA D . ∇ θ . ∇ θ ¿ − ∫ OMEGA λ ∇ . u ¿ ∫ OMEGA λ ¿ ∇ . u − θ r ∫ OMEGA ∇ . u ¿ . ∇ . u − θ ∫ OMEGA f . u ∫ OMEGA : ¿ − θ ¿ − θ ¿ = 0 ∀ u ¿ ¿ , λ 21 december 20 , 2006 Journée Momas
Benchmark Momas : Simulation of an Excavation under Brittle Hydro-mechanical behaviour Cylindrical cavity Excavation simulation Initial conditions : anisotropic state of stress (11.0MPa, -15.4MP) ; water pressure (4.7 Mpa) Y Radius of cavity : 3 meters Horizontal length for calculation domain : 60 meters Vertical length for calculation domain : 60 meters X θ Permeability : − 12 m . s − 1 10 Time of simulation for excavation : 17 days Time of simulation for consolidation : 10 years 22 december 20 , 2006 Journée Momas
Recommend
More recommend