thermal energy storage application perspectives technical
play

Thermal Energy Storage Application Perspectives Technical Challenges - PowerPoint PPT Presentation

SCCER Heat and Electricity Stroage HaE 7 th Symposium HSR Rapperswil, November 6, 2018 Thermal Energy Storage Application Perspectives Technical Challenges in the Component Development Paul Gantenbein, Xavier Daguenet-Frick, Mihaela Dudita, Lukas


  1. SCCER Heat and Electricity Stroage HaE 7 th Symposium HSR Rapperswil, November 6, 2018 Thermal Energy Storage Application Perspectives Technical Challenges in the Component Development Paul Gantenbein, Xavier Daguenet-Frick, Mihaela Dudita, Lukas Omlin, Mattia Battaglia, Michel Haller, Daniel Philippen, Daniel Carbonell, Andreas Häberle Institute for Solar Technology SPF – HSR University of Applied Sciences Rapperswil

  2. Content  Sensible Heat Storage Stratification / heat and mass transfer Fluid inlet design though CFD 1  Latent Heat Storage Phase change: water  Ice / heat transfer Heat exchanger design & Simulation model 2 4.0E+07 Desorber 3.5E+07  Sorption / Thermochemical Heat Storage 0.3 3.0E+07 -0.3 Nu*Pr4.226 [-] Closed – internal heat and mass transfer 2.5E+07 ref 2.0E+07 4 Heat and mass exchanger design 1.5E+07 1.0E+07 5.0E+06 0.0E+00 0 2 4 6 8 10 Re [-] 2 SCCER HaE 7th Symposium

  3. Heat Storage Types & Examples of Materials Materials Sensible heat Latent heat Chemical energy gas - liquid solid - gas solid - liquid solid - solid organics inorganics Eutetics Mixtures Eutetics Mixtures Single Temperature Single Temperature temperature interval temperature interval Paraffins Fatty acids Hydrated salts (alkanes mixtures) Source: A. Abhat: Solar Energy 30 p. 313 (1983) 3 SCCER HaE 7th Symposium

  4. Temperature Distribution in a Sensible Storage  Thermal stratification of sensible storage tanks fulfilling application temperature conditions Height H H Diameter D T high D IN Thermocline OUT T low Temperature T Cylindrical tank shapes temperature stratification H=height, D=diameter 𝟒 𝟒 ( 𝒎 𝒕 = ( 𝑵 𝟏 𝝇) 𝑾 𝟏 𝒘 𝟏 ) 𝟓 𝟓  Dimensionless number = 𝟐 𝟐/𝟑 𝛙 = 𝒎 𝒕 /𝒆 𝒈 - deflection relation 𝑾 𝟏 𝒉∆𝝇 (𝑮 𝟏 𝝇) 𝟑 - geometry A & v 0 , r (T), g 𝝇 4 SCCER HaE 7th Symposium

  5. Sensible Storage Type  Feed Inlet / Volume Flow / Stratification recommendation v< 0.1 m/s 1800 l/h 900 l/h 2’’, 30°C 2’’, 30°C 5 SCCER HaE 7th Symposium

  6. Sensible Type  Temperature stratification Battaglia, M.; Haller, M. Y. Stratification in large thermal storage tanks. Eurosun 2018, September 10 – 13, Rapperswil, Switzerland 6 SCCER HaE 7th Symposium

  7. Sensible Storage Type  Fluid feed inlet design fluid velocity v 0 inlet bent horizontal inlet towards the top/bottom of the storage Battaglia, M.; Haller, M. Y. Stratification in large thermal storage tanks. Eurosun 2018, September 10 – 13, Rapperswil, Switzerland 7 SCCER HaE 7th Symposium

  8. Content  Sensible Heat Storage Stratification / heat and mass transfer Fluid inlet design though CFD 1  Latent Heat Storage Phase change: water  Ice / heat transfer Heat exchanger design & Simulation model 2 4.0E+07 Desorber 3.5E+07  Sorption / Thermochemical Heat Storage 0.3 3.0E+07 -0.3 Nu*Pr4.226 [-] Closed – internal heat and mass transfer 2.5E+07 ref 2.0E+07 4 Heat and mass exchanger design 1.5E+07 1.0E+07 5.0E+06 0.0E+00 0 2 4 6 8 10 Re [-] 8 SCCER HaE 7th Symposium

  9. Latent Heat Storage Using Ice Storage  Ice Storage Heat Source or Sink Heat solar collector field Pump A) B) C) Eisspeicher Ambient air Bore hole Ice storage 9 SCCER HaE 7th Symposium

  10. Ice Storage Modul  Cylindrical storage shape  Plate heat exchanger (hex)  Mainly stainless steel Diameter of storage mm 1200 Height of storage mm 1950 m 3 Water content 2.0 Parallel pairs of hex-plates # 4 Distance between plates mm 120 Active surface of hex m 2 22 Latent heat (max.) kWh 129 Maximum icing fraction of mass 70 % Philippen, D.; Battaglia M.; Carbonell D.; Thissen B.; Kunath L.; Validation of an ice storage model and its integration into a solar-ice system. Eurosun 2018, September 10 – 13, Rapperswil, Switzerland 10 SCCER HaE 7th Symposium

  11. Mathematical Model: Ice Storage and Heat Exchanger  Model based on a more detailed T amb TRNSYS-model (transcription)  Mathematical model implemented into the Polysun simulation software 1  One-node (1) ice storage  Multi-node (12) heat exchanger (4 elements in parallel) 1 2 12  Physical model (versus old model which is empirical) T ice 2 plates in series (12 knots)  Ice storage can be coupled: − 1 UA tot = 1 1 1 1 a) with ground or + + + b) with a room temperature 𝑉𝐵 𝑗𝑜 𝑉𝐵 𝑥𝑏𝑚𝑚 𝑉𝐵 𝑗𝑑𝑓 𝑉𝐵 𝑝𝑣𝑢 11 SCCER HaE 7th Symposium

  12. Validation of the Ice Storage Model  Example: Freezing over 30 hours (steady state growing of ice) 12 SCCER HaE 7th Symposium

  13. Validation of the Ice Storage Model  Example: Freezing over 30 hours (steady state growing of ice) Solar Collectors Hot Water Room Heating Heat Pump Combi Storage Hydraulic separator Model implemented in Ice Storage the industry Philippen, D.; Battaglia M.; Carbonell D.; Thissen B.; Kunath L.; Validation of an ice storage model and its integration into a solar-ice system. Eurosun 2018, September 10 – 13, Rapperswil, Switzerland 13 SCCER HaE 7th Symposium

  14. Content  Sensible Heat Storage Stratification / heat and mass transfer Fluid inlet design though CFD 1  Latent Heat Storage Phase change: water  Ice / heat transfer Heat exchanger design & Simulation model 2 4.0E+07 Desorber 3.5E+07  Sorption / Thermochemical Heat Storage 0.3 3.0E+07 -0.3 Nu*Pr4.226 [-] Closed – internal heat and mass transfer 2.5E+07 ref 2.0E+07 4 Heat and mass exchanger design 1.5E+07 1.0E+07 5.0E+06 0.0E+00 0 2 4 6 8 10 Re [-] 14 SCCER HaE 7th Symposium

  15. Concept & Design Sorbate loop  Absorption Storage Experiment Sorbent loop  Separation of power and capacity units - Power unit: combined A-D & E-C heat and mass exchangers - Capacity unit: storage tanks  Seasonal charging and discharging processes 15 SCCER HaE 7th Symposium

  16. Potential M. Conde Engineering  Storage potential of materials solid (crystallization) – liquid LiCl-H 2 O Absorption potential D F in function of load c Eutectic Points 1.40E+06 LiBr-H2O 1.20E+06 NaOH-H2O 1.00E+06 LiCl-H2O D F (J/kg) 8.00E+05 6.00E+05 4.00E+05 2.00E+05 0.00E+00 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 c(H 2 O) (wt.%) “heat of solution” in case of vapour – liquid solution transition. (ex: at 90 wt.% and more water the D h v of water vapour will be released.) Solubility boundary of aqueous solutions of lithium chloride. Polanyi / Dubinin potential adsorption theory 16 SCCER HaE 7th Symposium

  17. Sorption Heat Storage  Charging and discharging Falling film - charging: desorption ok A-D tube bundle - discharging: absorption not ok E-C power units predicted exchanges power (W) 4.0E+07 Desorber 3.5E+07 30% 3.0E+07 Nu*Pr 4.226 (-) -30% Nu*Pr 4.226 [-] 2.5E+07 ref 2.0E+07 A-D A-D E-C 1.5E+07 1.0E+07 5.0E+06 0.0E+00 0.0 2.0 4.0 6.0 8.0 10.0 Re (-) Re [-] Condenser maximum flow rate: Heat transfer characteristics: Nu=Nu(Pr, Re) Measured exchanges power (W) 12 l(H 2 O)/min @ T=20 ° C Xavier Daguenet-Frick et al. Renewable Energy 110 (2017) 162-173. 17 SCCER HaE 7th Symposium

  18. Sorption Heat Storage  Power unit modification - heat & mass exchange surface wetting wetting agent TRITON ™ QS-1 tube surface structure tube surface anneling / coating - lye residence time in sorbate SiC ceramic foams low wetting better wetting Dudita M., Daguenet-Frick X., and Gantenbein P., EuroSun 2016, Palma (Mallorca) 18 SCCER HaE 7th Symposium

  19. Sorption Heat Storage Power unit modification Lye IN  Tube surface geometry  Wetting agent gravity  Hydrophilic ceramic foam:  wetting with concentrated aqueous sorbent. Lye OUT  increased residence time of the aqueous sorbent on the tube Excellent wetting of the SiC ceramic foam with concentrated NaOH and LiBr 10 PPI and NaOH 50 wt.% 20 PPI and NaOH 50 wt.% SiC and LiBr 54 wt.% 30 PPI Hydrophilic SiC ceramic foam with pores partially filled by concentrated aqueous sodium hydroxide. Porosity is ranging from 10 to 30 PPI , where PPI = number of pores per inch. 19 SCCER HaE 7th Symposium

  20. Experimental Set-up of the 1 kW Unit  Power and capacity units - Combined A-D & E-C heat and mass exchangers – seasonal separation C D - Sorbent and sorbate storage tanks A-D unit E-C unit A-D E-C B A T 60 water tank T 20 T 30 lye tanks (H 2 O) (NaOH-H 2 O) T 20 T 30 T 60 H 2 O loop NaOH/H 2 O loop feed pump feed pump Lab set-up EW 6 20 SCCER HaE 7th Symposium

  21. Operation with Water  set in operation – tests performed with water 4000 48 46 Expected power: 1 KW 3500 44 3000 42 40 2500 38 2000 36 34 A-D 1500 32 Temperatur T (°C) 1000 30 Power P (Watt) 28 500 26 0 24 22 -500 20 -1000 18 16 -1500 14 -2000 12 E-C 10 -2500 8 power AD unit power EC unit T inlet AD -3000 6 4 -3500 T outlet AD T outlet EC T inlet EC 2 -4000 0 13:00:00 13:30:00 14:00:00 14:30:00 15:00:00 15:30:00 16:00:00 time (hh:mm:ss) Power and temperatures in the A-D and E-C units 21 SCCER HaE 7th Symposium

Recommend


More recommend