theory of cooling neutron stars
play

THEORY OF COOLING NEUTRON STARS Self-similarity and - PowerPoint PPT Presentation

THEORY OF COOLING NEUTRON STARS Self-similarity and model-independent data analysis D.G. Yakovlev and P.S. Shternin Ioffe Physical Technical Institute, St.-Petersburg, Russia Introduction Neutrino emission Superfluidity Standard


  1. THEORY OF COOLING NEUTRON STARS Self-similarity and model-independent data analysis D.G. Yakovlev and P.S. Shternin Ioffe Physical Technical Institute, St.-Petersburg, Russia • Introduction • Neutrino emission • Superfluidity • Standard neutrino candle • Selfsimilarity • Types of cooling neutron stars • Conclusions Florence – GGI – March 25, 2014

  2. This conference and cooling neutron stars

  3. Neutron star structure Mystery: EOS of superdense matter in the core For simplicity, consider nucleon core: neutrons protons electrons muons EOS=? Superlfuidity=?

  4. Cooling of isolated neutron stars Heat diffusion with neutrino and photon losses with possible heat sources Cooling regulators: • EOS • Neutrino emission What information • Heat capacity can be extracted • Thermal conductivity from observations? • Superfluidity • Internal heat sources?

  5. THREE COOLING STAGES Example: non-superfluid NS Modified Urca cooling Stage Duration Physics 10 — 100 yr Relaxation Crust Neutrino 10-100 kyr Core, surface Photon infinite Surface, core, reheating

  6. Isothermal Interior Isothermal interior:   T t ( ) T r t ( , ) exp ( ) r =redshifted internal temperature, independent of r Equations of thermal evolution reduce to global thermal balance: dT        C T ( ) L T ( ) L L T ( )   h s dt           2 2 L T ( ) dV Q T ( ) e , L dV Q e , C( ) T dV c T ( )  h h T = redshifted total neutrino luminosity, heating power and heat capacity of NS     2 4 L T ( ) 4 R T ( ) = redshifted thermal photon luminosity of NS   s s  T T T ( ) ~ T    = solution for heat blanket 2 R R 1 2 GM / Rc s s  2   4 r dr   2 1 2 / T T GM Rc dV = proper volume element s s  2 1 2 Gm c r /

  7. Cooling of isolated middle-aged neutron star Global thermal balance: dT        C T ( ) L T ( ) L L T ( )   h s dt Star is cooling from inside via neutrino emission from its core     exp(2 ) The equation dV Q dT L     is immediately l T ( ), ( ) l T  dt C integrated dV c T = neutrino cooling rate [K/yr]= the only one function that drives l T M ( , ) cooling Using cooling theory one can only determine this one function, and nothing else! The function is insensitive to details of NS structure; but sensitive to extraordinary things: EOS, neutrino emission, superfluidity

  8. Neutrino emission from cores of non-superfluid NSs Outer core Inner core NS with nucleon core: Slow emission Fast emission N=n, p erg cm -3 s -1 } Direct Urca Fast         n p e p e n e e } Modified Urca STANDARD     nN pNe pNe nN }  n n NN bremsstrahlung  n p    N     N N N  p p   6 6 Enhanced emission in inner cores of Q Q T L L T FAST 0F FAST 0F massive neutron stars:   8 8 Q Q T L L T Everywhere in neutron star cores: SLOW 0S SLOW 0S

  9. Neutrino emission of non-superfluid neutron star Direct Urca is allowed Direct Urca is forbidden (maximal cooling) (minimal cooling)     1. nN pNe pNe nN       2. nn nn 3. np np 4. pp pp

  10. Superfluid neutron stars Mechanism of superfluidity: Cooper pairing of degenerate neutrons and/or protons due to nuclear attraction Any superfluidity is defined by critical temperature T C , that depends on density Main effects: • has almost no effect of EOS and hydrostatic structure of neutron stars • suppresses ordinary neutrino processes (especially at T<<T c ) • creates a new mechanism of neutrino emission due to Cooper pairing of nucleons • affects heat capacity

  11. Superfluidity – Critical temperatures  10 0 ~1 MeV T ~10 K high T !!! Dependence of T c on density c c After Lombardo & Schulze (2001) A=Ainsworth, Wambach, Pines (1989) S=Schulze et al. (1996) At high densities superfluidity W=Wambach, Ainsworth, Pines (1993) C86=Chen et al. (1986) disappears C93=Chen et al. (1993)   ( ), ( ) T T Our task is to study in neutron star core cn cp

  12. Superfluidity – microscopic manifestations T=0   ( , ) T Creates gap 2 p   in energy spectrum near Fermi level 2 m Microscopic calculations of the gap are very model dependent (nuclear interaction; many-body effects) Superfluid Free Fermi gas Fermi gas Temperature dependence of the gap

  13. Neutrino emission due to Cooper pairing Flowers, Ruderman and Features: Sutherland (1976) • Efficient only for Voskresensky and Senatorov triplet-state pairing (1987) of neutrons Schaab et al. (1997) • Non-monotonic      Q(T) n n • Strong many-body effects Physics: Jumping over cliff Single state proton from branch A to B superfluidity suppresses neutrino emission Triple state neutron A superfluidity can Temperature dependence of enhance neutrino emissivity due to Cooper pairing B Leinson (2001 ) Leinson and Perez (2006) Sedrakian, Muether, Schuck (2007) Kolomeitsev, Voskresensky (2008) Steiner, Reddy (2009) Leinson (2010) S

  14. Neutrino luminosity of superfluid neutron star Non-superfluid star Add strong proton super- Add moderate neutron with nucleon core fluidity superfluidity: Standard Murca cooling Very slow cooling CP neutrino outburst Murca   L ~ 0.01 L Murca Cooper Murca L L L ~ (10 100) L       PW Non- 8 8 Power-law L ~ T Power-law L ~ T   PW PW     nN pNe pNe nN         nN pNe pNe nN nN pNe pNe nN   nn nn     nn nn nn nn   np np     np np np np   pp pp     pp pp   pp pp nn 8 Pow-law L ~ T is violated only when superfluidity appears 

  15. STANDARD NEUTRINO CANDLE Def: Standard neutrino candle = a neutron star which cools as a nonsuperfluid star through modified Urca process at given M and R = convenient cooling model to compare with observations Nonsuperfluid star with nucleon core Murca cooling

  16. BASIC COOLING CURVE AND STANDARD NEUTRINO CANDLE Universal at neutrino cooling stage with isothermal interior Nonsuperfluid star Nucleon core EOS PAL (1988) Standard neutrino candle Oleg Gnedin Cooling code

  17. Unsuccessful explanation: Mucra and Durca, no superfluidity 1=Crab 2=PSR J0205+6449 3=PSR J1119-6127 4=RX J0822-43 5=1E 1207-52 6=PSR J1357-6429 7=RX J0007.0+7303 8=Vela 9=PSR B1706-44 10=PSR J0538+2817 11=PSR B2234+61 12=PSR 0656+14 13=Geminga 14=RX J1856.4-3754 15=PSR 1055-52 16=PSR J2043+2740 17=PSR J0720.4-3125 Does not explain     the data 15 M 1.977 M 2.578 10 g/cc MAX SUN c     14 M 1.358 M 8.17 10 g/cc D SUN c   From 1.1 M to 1.98 M with step M 0.01 M SUN SUN SUN

  18. Direct Urca and strong ptoton SF in outer core  1.61 M M VELA SUN

  19. Strong proton SF, moderate neutron SF, no Durca One model of superfluidity for all neutron stars Only T cn superfluidity I explains all the sources Gusakov et al. (2004) Alternatively: wider profile, but the efficiency of CP neutrino emission at low densities is weak

  20. MODEL-INDEPENDENT STANDARD NEUTRINO CANDLE Isothermal interior, neutrino cooling stage, lower-law cooling  dT L     = cooling equation for INSs l T ( ), ( ) l T dt C     n n 1 ( ) ~ , ( ) ~ ( ) L T T C T T l T qT Assume:  1 ( ) T t   T t ( ) , ( ) l t Solution:    1/( n 2) [( n 2) qt ] ( n 2) t     T ~ T 1/6 1/12 T t ( ) ~ t , T ( ) ~ t t Case n=8: Slow cooling s s Model-independent solution for standard candles (many EOSs):   2 1/6     R t     8      c  ( ) 3.45 10 K (1 ) 1 0.12 10 km T t x SC     2 GM   t    x 2 Rc  t 330 yrs Yakovlev, Ho, Shternin, Heinke, Potekhin (2011) c

  21. Extracting neutrino luminosity function (power-law cooling) Step 1. Observe thermal emission of NS. Assume some M, R + NS atmosphere model and infer T s (or L s ). Step 2. Assume some composition of the heat blanketing envelope, use the theoretical T s – T b relation and find the internal current temperature of the star T(t). Step 3. Assume standard cooling (T(t)~t -1/6 ) and determine the internal current neutrino luminosity function l(M,R,t). Step 4. Use the theory and find the internal current temperature T SC (t) of the standard candle for given M, R, t. Step 5. Compare T(t) with T SC (t) and determine the neutrino luminosity function in units of standard candles,  f l T ( ) / l ( ) T l SC Congrats! You can now reconstruct the cooling history of the star in a model-independent way. The problem you solved is selfsilimar, with one selfsimilarity parameter f l . You can obtain f l and analyze it later

Recommend


More recommend