their effective physics
play

THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania - PowerPoint PPT Presentation

F-THEORY FLUXES & THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania "New Ideas at the Interface of Cosmology and String Theory 17 of March, 2012 Based on: T.W. Grimm, M. Poretschkin, D.K.: arXiv:1202.0285


  1. F-THEORY FLUXES & THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania "New Ideas at the Interface of Cosmology and String Theory” 17 π‘’β„Ž of March, 2012 Based on: T.W. Grimm, M. Poretschkin, D.K.: arXiv:1202.0285 [hep-th]; T.W. Grimm, T.-W. Ha, A. Klemm, DK: arXiv:0912.3250 [hep-th], arXiv:0909.2025 [hep-th] .

  2. MOTIVATION F-theory describes a broad class of interesting 4d N=1 Type II string vacua β€’ N=1 SUSY gauge theory with non-abelian (GUT-)gauge group. β€’ Charged chiral matter, Yukawa couplings: Beyond SM model building. β€’ Coupling to gravity in compact geometries. β€’ Duality to heterotic string compactifications. Dynamical objects in Type IIB string theory mapped to F-theory geometry. β€’ F-theory in a Type IIB language: β€’ Inclusion of back-reacted 7-branes (D7, O7,...) with cancelled tadpoles. β€’ Type IIB with non-perturbative coupling regions on non-CY geometry. β€’ F-theory in geometric language: elliptically fibered Calabi-Yau fourfold.

  3. MOTIVATION Requirement of G-fluxes in F-theory β€’ Extra discrete degrees of freedom to specify vacuum. β€’ Required by consistency of compactification: D3-tadpole cancellation Goal of this talk: What is the 4d effective physics of G-fluxes? β€’ Induce superpotential: stabilization of some geometric moduli. β€’ Generation of 4d chirality by appropriate fluxes. β€’ back-reaction of fluxes necessary for full understanding of 4d effective physics: derivation of 7-brane gauge coupling from warping in F-theory.

  4. Introduction F-THEORY WITH FLUXES

  5. FORMULATING F-THEORY F-theory introduced as a geometric SL(2,  ) invariant formulation of Type IIB β€’ Vafa ’96; Review: Denef β€˜08 Introduce SL(2,  ) invariant geometric object: two-torus π‘ˆ 2 with β€œshape” β€’ parameter Ο„ 𝜐 1 SL(2,  ) acts as a modular transformation on Ο„ leaving π‘ˆ 2 (conformally) β€’ invariant. Ο„ ↦ π‘πœ + 𝑐 π‘‘πœ + 𝑒 𝑔𝑝𝑠 𝑏 𝑐 𝑒 ∈ 𝑇𝑀 2, β„€ 𝑑 Identify axio-dilaton of Type IIB: 𝜐 β†’ π‘ˆ 2 𝜐 . β€’ βˆ’1 Ο„ ≑ 𝐷 0 + 𝑗𝑕 𝑑 β€œSize” of π‘ˆ 2 unphysical: disregarded by formally setting vol π‘ˆ 2 ) β†’ 0 . β€’

  6. FORMULATING F-THEORY Non-trivial profile of axio-dilaton Ο„ in the presence of 7-branes. β€’ ℝ 2 Monodromy: z 𝜐 ↦ 𝜐 + 1 D7 𝜐 (z) 1 β‡’ 𝜐 𝑨 = 2πœŒβ…ˆ ln 𝑨 , , Singularity at 𝑨 = 0 . 𝜌 7-branes are global defects of space-time inducing a deficit angle 6 . β€’ Greene,Shapere,Vafa,Yau ’90; Vafa ’96 . 24 7-branes produce a deficit angle 4𝜌 : ℝ 2 compactified to 𝑇 2 . β€’ 𝜐 (z) D7 (p,q) 7 O7 𝑇 2 Tori π‘ˆ 2 Ο„) over 𝑇 2 define singular elliptically fibered Calabi-Yau twofold K3. β€’

  7. 4D F-THEORY Construct 4d F-theory vacua by replacing 𝑇 2 β†’ six-dimensional : 𝐢 6d β€’ singular K3 β†’ singular elliptic Calabi-Yau fourfold π‘Œ 4 . β€’ F-theory is non-perturbative compactification: strong coupling regions of singular at 𝑨 = 0 . Ο„ and complicated setup of 7-branes on 𝐢 6d . 7-branes are encoded in the singularities of π‘Œ 4 : Geometric description of β€’ gauge groups (Tate’s algorithm) including ADE groups. Tate ’75; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa β€˜96 Chiral matter and Yukawa couplings appear from multiple intersections of 7- β€’ branes. Katz,Vafa β€˜96

  8. FORMULATING F-THEORY β€’ Gauge theory in 8d 𝐢 6d 𝐸 4𝑒 𝐢 6𝑒 in 4𝑒 𝐸 β€’ Matter in 6d 𝐸′ 4𝑒 singular at 𝑨 = 0 . Ξ£ 2𝑒 𝐢 6d in β€’ Yukawas in 4d pt 0𝑒 𝐸 4𝑒 pt 0𝑒 𝐢 6d Ξ£ 2𝑒 in β€’ Recent advances in realistic GUT model building in F-theory based on this Donagi,Wijnholt β€˜08; Beasley,Heckman,Vafa ’08; Review: Heckman β€˜10 structure. Marsano,Saulina,SchaferNamek ’09; Blumenhagen,Grimm,Jurke,Weigand ’09

  9. PROBE-FLUXES IN F-THEORY β€’ Additional discrete degrees of freedom have be added 𝐻 4 ∈ 𝐼 4 π‘Œ 4 , β„€ . β€’ Quantized G-flux 𝐻 4 : Witten β€˜96 Sethi,Vafa,Witten β€˜96 β€’ D3-tadpole. Flux-lines π‘Œ 4 𝐻 4 𝐻 4 There are two qualitatively different fluxes on π‘Œ 4 β€’ Greene,Morrison,Plesser β€˜94 4 π‘Œ 4 , β„€ Vertical fluxes 𝐼 π‘Š 4 π‘Œ 4 , β„€ β€’ Horizontal fluxes 𝐼 𝐼 superpotential, D-term potential, moduli stablization 4d chirality, warping Goal: Understand the effect of two types of fluxes on the 4d effective action of F-theory

  10. The flux superpotential HORIZONTAL FLUXES

  11. THE FLUXSUPERPOTENTIAL The horizontal flux 𝐻 4 enters the superpotential 𝑋 Gukov,Vafa,Witten β€˜99 β€’ π»π‘Šπ‘‹ Becker,Becker β€˜96 𝑋 π»π‘Šπ‘‹ 𝑨 4 ) = 𝐻 4 ∧ Ξ© 4 𝑨 4 ) π‘Œ 4 Ξ© 4 𝑨 4 is 4,0) -form depending on complex structure moduli on π‘Œ 4 . β€’ 𝐻 4 is specified by flux quanta π‘œ 𝐡 along cycles 𝐷 𝐡 β€’ π‘Œ 4 𝐻 4 = π‘œ 𝐡 𝐷 𝐡 Ξ  𝐡 𝑨 4 ) = Ξ© 4 𝑨 4 ) 𝐻 4 𝐻 4 𝐷 𝐡 𝑋 π»π‘Šπ‘‹ is sum of periods Ξ  𝐡 𝑨 4 ) of π‘Œ 4 measuring holomorphic β€’ volumes π»π‘Šπ‘‹ 𝑨 4 = π‘œ 𝐡 Ξ  𝐡 𝑨 4 ) 𝑋 Exact calculation of 𝑋 β€’ π»π‘Šπ‘‹ possible in examples.

  12. THE FLUXSUPERPOTENTIAL A big class of F-theory fourfolds explicitly constructed as toric hypersurfaces β€’ Klemm,Lian,Roan,Yau ’97 5 π‘Œ 4 = {𝑄 = 0} in a toric variety β„™ Ξ” Mayr β€˜96 𝑋 π»π‘Šπ‘‹ 𝑨 4 ) exactly calculable: Ξ  𝑨 4 from Picard-Fuchs differential eqs. β€’ Grimm,Ha,Klemm,DK I β€˜09 β€’ Calculation of Type IIB superpotentials in weak coupling limit: flux + brane 𝐽𝐽𝐢 + 𝑋 𝐽𝐽𝐢 𝑋 π»π‘Šπ‘‹ 𝑨 4 ↦ 𝑋 π‘”π‘šπ‘£π‘¦ 7π‘π‘ π‘π‘œπ‘“ Grimm,Ha,Klemm,DK I β€˜09 Use 𝑋 π»π‘Šπ‘‹ for stabilization of complex structure moduli in F-theory and IIB. β€’ Dasgupta,Rajesh,Sethi β€˜99; Giddings,Kachru,Polchinski β€˜01; Kachru,Kallosh,Linde,Trivedi ’03; Lust,Mayr,Reffert,Stieberger ’05 𝑋 π»π‘Šπ‘‹ relevant for fourfold mirror symmetry: Generalizes N=2 prepotential. β€’ Klemm,Pandharipande β€˜07 By heterotic/F-theory duality 𝑋 π»π‘Šπ‘‹ maps to heterotic superpotentials: β€’ heterotic flux, M5-brane and vector bundle superpotential. Grimm,Ha,Klemm,DK II β€˜09

  13. Chirality and flux back-reaction VERTICAL FLUXES

  14. VERTICAL FLUXES & CHIRALITY The vertical fluxes 𝐻 4 define a D-term potential 𝒰 , 𝐾 = KΓ€hler form β€’ 𝒰 t) = 𝐻 4 ∧ 𝐾 𝑒 ∧ 𝐾 𝑒 π‘Œ 4 Haack,Louis ’01; Grimm β€˜10 𝐻 4 determines chirality of 4d matter in rep 𝑆 of gauge group 𝐻 β€’ 𝐽𝐾 πœ– 𝑒 𝐽 𝑒 𝐾 2 πœ“ 𝑺 = 𝐡 𝑺 𝒰 ≑ 𝐻 4 , 𝐷 𝑺 = β‹― … . Matter surface 𝐷 𝑺 Marsano,SchaferNameki ’11; Grimm,Hayashi β€˜11 β€’ Derivation of chirality formula in 3d N=2 theory via duality F-theory on 𝑇 1 3d M-th 𝑠𝑓𝑑 4d F-theory on π‘Œ 4 theory on π‘Œ 4 𝑂 = 1 gauge theory 𝑂 = 2 gauge theory Coulomb branch 𝐻 β†’ 𝑉 1 𝑠𝑙 𝐻) Non-abelian gauge group 𝐻 𝒰 )𝐡 𝐽 ∧ 𝐺 𝐾 2 Chiral matter in rep 𝑆 massive matter no matter, πœ– 𝑒 𝐽 𝑒 𝐾 In F-theory, a CS-Terms Θ IJ A I ∧ 𝐺 𝐾 generated at 1-loop of massive matter β€’ 𝐽𝐾 Θ 𝐽𝐾 ∼ πœ“ 𝑺 , 2 𝐡 𝑺 … . Θ 𝐽𝐾 ≑ πœ– 𝑒 𝐽 𝑒 𝐾 𝒰 ⟹ πœ“ 𝑺 = 𝐻 4 1-loop: M-theory: 𝐷 𝑺 Grimm,Hayashi ’11; Grimm, DK in progress

  15. BACKREACTED FLUXES IN F-THEORY In M-theory (=F-theory on 𝑇 1 ) G-flux 𝐻 4 back-reacts on geometry β€’ Ξ” π‘Œ 4 𝑓 3𝐡/2 =βˆ— π‘Œ 4 𝐻 4 ∧ 𝐻 4 ) Becker,Becker β€˜96; β€’ Warping: Haack,Louis β€˜01 β€’ Change of KK-ansatz by warping: non-closed 3-from 𝛾 Dasgupta,Rajesh,Sethi β€˜99; 𝐷 3 = 𝛾 + Harmonic forms Grimm,DK,Poretschkin β€˜12 Goal: 𝑦 𝐾 : TN-centers 𝑇 1 𝑇 2 β€’ Solve warp-factor equation and construct 3-form 𝛾 in local model for π‘Œ 4 . 𝑦 𝑦 2 𝑦 1 periodic β€’ Understand corrections on 4d effective physics: 7-brane gauge coupling. 𝑨

  16. BACKREACTED FLUXES IN F-THEORY Construct a local model of π‘Œ 4 for a stack of k 7-branes as follows β€’ k 7-brane stack k 6-brane stack 𝑇 1 Periodic multi-center M- on divisor 𝑇 on divisor 𝑇 T-duality theory Taub-NUT over S 𝑦 𝐾 : TN-centers 𝑇 2 𝑒 𝑦 𝑦 2 𝑦 1 periodic 𝑇 1 𝑨 Grimm,DK,Poretschkin β€˜12 Taub-NUT with k-centers is resolved 𝐡 𝑙 -singularity: 𝑙 resolving 𝑇 2 = β€’ = SU(k) gauge group of k 7-branes.

  17. PERIODIC TAUB-NUT FOR F-THEORY β€’ Explicit construction of metric on periodic Taub-NUT: 𝑒𝑑 2 = 1 π‘Š 𝑒𝑒 + 𝑉 2 + π‘Šπ‘’π‘  2 , 𝑠 ∈ ℝ 3 Gibbons-Hawking: 𝑙 𝑙 π‘Š = 1 + π‘Š , 𝑉 = 𝑉 𝐽 , π‘’π‘Š 𝐽 =βˆ— 3 𝑒𝑉 𝐽 𝐽 𝐽=1 𝐽=1 π‘Š β€’ 𝐽 explicitly constructed as infinite series π‘Š 𝐽 = log 𝑨 βˆ’ 𝐿 0 2𝜌 𝑨 π‘œ cos 2πœŒπ‘œ 𝑦 βˆ’ 𝑦 𝐽 ) π‘œ>0 Ooguri,Vafa’96 Identification along periodic direction 𝑦 yields elliptic fibration of F-theory π‘Œ 4 β€’ 𝑒𝑑 2 = 𝑀 0 𝑒𝑒 + 𝑆𝑓 πœπ‘’π‘¦ 2 + 𝐽𝑛 πœπ‘’π‘¦ 2 + 𝑒𝑑 ℝ 2 ×𝑇 𝐽𝑛 𝜐 𝜐 𝑨 = 𝜐 0 + 𝑙 Leading axio-dilaton: 2πœŒπ‘— log 𝑨 + β‹― Recover familiar form of 𝜐 𝑨) for k D7-branes + new corrections. β€’ Grimm,DK,Poretschkin β€˜12

Recommend


More recommend