The Strained State Cosmology Angelo Tartaglia Politecnico di Torino and INFN
Prologue • It seems that something pushes space to expand, but we do not know what it is. Apparently it does not produce other effects • It seems that, at a big enough scale, localized gravitational effects exist whose source is not otherwise visible. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 2
Premises • Apparently the gravitational interaction is very well described as a geometric property of a four-dimensional Riemannian manifold T G • Other fundamental interactions do not share this geometric essence 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 3
Axiomatic assumption • The physical configuration of the world, in all interactions, satisfies an universal principle of “economy”: the ‘least’ action principle N L S * d x S 0 Scalar Lagrangian density N-form 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 4
What is L made of? • Formal mathematical answer: any scalar function of the state variables and their derivatives with respect to the (arbitrarily chosen) coordinates • Intuitive physical answer: in analogy with the Lagrangian densities, a posteriori built starting from the recognized physical laws validated by experiment 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 5
Additional assumption • The Lagrangian density must have the highest possible ‘formal symmetry’ (the highest simplicity). • Non- ”simple” functional forms require ad hoc motivations. – Is reproducing a specific observed physical situation enough? – Is it possible to find universal ‘non - simple’ solutions? 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 6
Tridimensional analogy • Deformable continuous media • Geometrizable interaction: elastic interaction (with an external evolution parameter – time -) • Macroscopic emergent representation, from microscopic elementary interactions 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 7
“Elastic” continua N+n N 0 f X , X ,..., X 1 2 N n ξ a u ' h X , X ,..., X 0 1 2 N n u r x μ N r’ X a 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 8
Deformation • Undifferenciated reference state flat manifold independent from the parameter. 2 i j dl E dx dx 0 ij • Geometry: Euclidean/Minkowskian • Deformation due either to intrinsic (defects) or ‘extrinsic’ (matter/energy) causes globally 2 i j dl g dx dx g E ij ij ij • Riemannian geometry 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 9
The strain tensor Lagrangian coordinates Free energy Lamé coefficients Second order scalars 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 10
The stress (linear elasticity) Hooke ’s law Elastic energy 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 11
Generalization to 4 dimensions: Lagrangian density 1 L 2 4 S R 2 2 g d x matter 2 Potential term: “dark energy” “Kinetic” term Geometry 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 12
Lagrangian density and energy-momentum tensor 1 1 T e g g g 4 2 1 g g 2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 13
Robertson-Walker symmetry Image space Reference manifold O’ 2 2 2 2 ds nat d a dl O Defect 1 Cosmic time g E 2 =f( ρ ) ρ Space 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 14
RW Lagrangian density Integration by parts 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 15
Euler Lagrange equations 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 16
Solution 2 a 3 B 2 2 a a a 3 2 a 8 a 3 B Energy 3 2 2 2 a a a W 6 condition a 2 B T W 0 a e 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 17
The Hubble parameter with matter/radiation 1 / 2 2 2 a B 1 z 3 H c 1 z 1 z 1 m 0 r 0 2 a 3 4 a 0 8 G c 2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 18
Equation of state of the “strain fluid” 2 2 3 a 2 c B e 4 4 2 4 a 3 a 2 a 1 w 4 2 2 B 3 a 2 a 1 2 3 a p e 4 a 4 1 w w 1 a a 0 3 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 19
Some cosmological tests • SnIa luminosity • Primordial nucleosynthesis (correct proportion between He, D and hydrogen) • CMB acoustic horizon • BAO • Structure formation after the recombination era. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 20
Fitting the supernovae it works λ μ 10 -52 m -2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 21
Bayesian posterior probability 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 22
Optimal value of the parameters B 2 28 0 08 10 52 m 2 . . 2 45 0 15 10 27 kg m 3 . . / m 0 1 B 0 012 0 06 10 m 52 2 . . a 0 8 4 B a a r 0 0 9 0 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 23
Matter or defects? Flat reference manifold ds ref 2 E dx dx Defect g E 2 ds nat 2 g dx dx Curved natural manifold 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 24
“Massive” gravity SST Lagrangian density Fierz and Pauli Lagrangian density Linearized difference between the metric tensor and a Minkowski background 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 25
Non- linear “massive” gravity Introduce an auxiliary metric tensor f then from it and the background build a quantity H and write “Massive” gravity theories do not correspond to SST where: • ε is “exact” • the only metric tensor is g • the reference manifold is Euclidean 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 26
Questions • Is the elasticity of space-time an emerging property? – May be. It involves the issue of the dualism space-time/matter-energy • Is SST analogous to massive gravity? – Not really • Is SST a bimetric theory? – No 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 27
Questions • Can defects get rid of matter? – Troubles with quantum mechanics… • Is this approach better than many others? – It depends on which criterion is used to judge what is best. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 28
Conclusion • The idea is that – Space-time is physical – there is a deformation energy density in space- time due to curvature. • If we include a cosmic defect we obtain the Robertson-Walker symmetry and the accelerated expansion. • SST proposes an intuitive interpretation of Λ , or, more generally, of dark energy. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 29
References • N. Radicella, M. Sereno, A. Tartaglia, MNRAS, 429 , 1149-1155 (2013) • Radicella N., Sereno M., Tartaglia A., CQG, 29 , 115003 (2012) • N. Radicella, M. Sereno, A. Tartaglia, IJMPD, 20 , 1039 (2011) • A. Tartaglia, ”The Strained State Cosmology”, in Aspects of Today’s Cosmology , Ed. A. Antonio-Faus, InTech, Rijeka, p. 30-48 (2011). • A. Tartaglia, N. Radicella, CQG, 27 , 035001 (2010) 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 30
Recommend
More recommend