the strained state cosmology
play

The Strained State Cosmology Angelo Tartaglia Politecnico di Torino - PowerPoint PPT Presentation

The Strained State Cosmology Angelo Tartaglia Politecnico di Torino and INFN Prologue It seems that something pushes space to expand, but we do not know what it is. Apparently it does not produce other effects It seems that, at a big


  1. The Strained State Cosmology Angelo Tartaglia Politecnico di Torino and INFN

  2. Prologue • It seems that something pushes space to expand, but we do not know what it is. Apparently it does not produce other effects • It seems that, at a big enough scale, localized gravitational effects exist whose source is not otherwise visible. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 2

  3. Premises • Apparently the gravitational interaction is very well described as a geometric property of a four-dimensional Riemannian manifold   T G   • Other fundamental interactions do not share this geometric essence 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 3

  4. Axiomatic assumption • The physical configuration of the world, in all interactions, satisfies an universal principle of “economy”: the ‘least’ action principle        N L S * d x S 0 Scalar Lagrangian density N-form 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 4

  5. What is L made of? • Formal mathematical answer: any scalar function of the state variables and their derivatives with respect to the (arbitrarily chosen) coordinates • Intuitive physical answer: in analogy with the Lagrangian densities, a posteriori built starting from the recognized physical laws validated by experiment 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 5

  6. Additional assumption • The Lagrangian density must have the highest possible ‘formal symmetry’ (the highest simplicity). • Non- ”simple” functional forms require ad hoc motivations. – Is reproducing a specific observed physical situation enough? – Is it possible to find universal ‘non - simple’ solutions? 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 6

  7. Tridimensional analogy • Deformable continuous media • Geometrizable interaction: elastic interaction (with an external evolution parameter – time -) • Macroscopic emergent representation, from microscopic elementary interactions 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 7

  8. “Elastic” continua N+n N   0 f X , X ,..., X  1 2 N  n ξ a    u '   h X , X ,..., X  0 1 2 N  n    u r x μ N r’ X a 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 8

  9. Deformation • Undifferenciated reference state  flat manifold independent from the parameter. 2  i j dl E dx dx 0 ij • Geometry: Euclidean/Minkowskian • Deformation due either to intrinsic (defects) or ‘extrinsic’ (matter/energy) causes globally   2 i j dl g dx dx g E ij ij ij • Riemannian geometry 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 9

  10. The strain tensor Lagrangian coordinates Free energy Lamé coefficients Second order scalars 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 10

  11. The stress (linear elasticity) Hooke ’s law Elastic energy 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 11

  12. Generalization to 4 dimensions: Lagrangian density     1            L 2 4 S R 2 2 g d x    matter   2 Potential term: “dark energy” “Kinetic” term Geometry 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 12

  13. Lagrangian density and energy-momentum tensor   1 1          T e g g g         4 2   1                   g g          2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 13

  14. Robertson-Walker symmetry Image space Reference manifold  O’   2     2 2 2 ds nat d a dl O Defect   1 Cosmic time    g E    2   =f( ρ ) ρ Space 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 14

  15. RW Lagrangian density Integration by parts 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 15

  16. Euler Lagrange equations 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 16

  17. Solution       2 a 3 B           2 2 a a a   3 2 a 8 a 3   B Energy 3 2      2 2 a a a W 6 condition a 2            B T W 0 a e 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 17

  18. The Hubble parameter with matter/radiation 1 / 2     2       2        a B 1 z            3   H c 1 z 1 z 1   m 0 r 0 2   a 3 4   a   0 8    G c 2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 18

  19. Equation of state of the “strain fluid”   2   2 3 a    2 c B      e 4 4 2 4 a 3 a 2 a 1   w      4 2 2   B 3 a 2 a 1 2 3 a  p   e 4 a 4 1    w w 1    a a 0 3 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 19

  20. Some cosmological tests • SnIa luminosity • Primordial nucleosynthesis (correct proportion between He, D and hydrogen) • CMB acoustic horizon • BAO • Structure formation after the recombination era. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 20

  21. Fitting the supernovae it works λ  μ  10 -52 m -2 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 21

  22. Bayesian posterior probability 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 22

  23. Optimal value of the parameters   B 2 28 0 08 10 52 m 2      . .   2 45 0 15 10 27 kg m 3      . . / m 0   1 B  0 012 0 06 10 m 52 2    . . a 0 8 4 B a   a r 0 0 9 0 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 23

  24. Matter or defects? Flat reference manifold   ds ref  2 E dx dx  Defect  g E      2   ds nat  2 g dx dx Curved natural manifold  18/07/2014 FFP14 - Marseille- Angelo Tartaglia 24

  25. “Massive” gravity SST Lagrangian density Fierz and Pauli Lagrangian density Linearized difference between the metric tensor and a Minkowski background 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 25

  26. Non- linear “massive” gravity Introduce an auxiliary metric tensor f  then from it and the background build a quantity H  and write “Massive” gravity theories do not correspond to SST where: • ε  is “exact” • the only metric tensor is g  • the reference manifold is Euclidean 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 26

  27. Questions • Is the elasticity of space-time an emerging property? – May be. It involves the issue of the dualism space-time/matter-energy • Is SST analogous to massive gravity? – Not really • Is SST a bimetric theory? – No 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 27

  28. Questions • Can defects get rid of matter? – Troubles with quantum mechanics… • Is this approach better than many others? – It depends on which criterion is used to judge what is best. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 28

  29. Conclusion • The idea is that – Space-time is physical – there is a deformation energy density in space- time due to curvature. • If we include a cosmic defect we obtain the Robertson-Walker symmetry and the accelerated expansion. • SST proposes an intuitive interpretation of Λ , or, more generally, of dark energy. 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 29

  30. References • N. Radicella, M. Sereno, A. Tartaglia, MNRAS, 429 , 1149-1155 (2013) • Radicella N., Sereno M., Tartaglia A., CQG, 29 , 115003 (2012) • N. Radicella, M. Sereno, A. Tartaglia, IJMPD, 20 , 1039 (2011) • A. Tartaglia, ”The Strained State Cosmology”, in Aspects of Today’s Cosmology , Ed. A. Antonio-Faus, InTech, Rijeka, p. 30-48 (2011). • A. Tartaglia, N. Radicella, CQG, 27 , 035001 (2010) 18/07/2014 FFP14 - Marseille- Angelo Tartaglia 30

Recommend


More recommend