the role of mobility and control in the inference of representations stefano soatto ucla t. lee, a. ayvaci, j. dong, d. davis, j. balzer, j. hernandez, l. valente 1 Saturday, November 30, 13 1
what is a “representation” ? why do we need it? what does control have to do with it? keywords: data processing inequality, information bottleneck, lambert-ambient model, sufficient excitation, actionable information gap, active sensing/ perception 2 Saturday, November 30, 13 2
data 3 Saturday, November 30, 13 3
y t . = { y 0 , . . . , y t } data 3 Saturday, November 30, 13 3
y t . = { y 0 , . . . , y t } data 3 Saturday, November 30, 13 3
y t . = { y 0 , . . . , y t } data task 3 Saturday, November 30, 13 3
y t . = { y 0 , . . . , y t } ξ data task 3 Saturday, November 30, 13 3
ξ ? y t . = { y 0 , . . . , y t } data task 3 Saturday, November 30, 13 3
ξ ? y t . = { y 0 , . . . , y t } data task “representation”? 3 Saturday, November 30, 13 3
y t . ? = { y 0 , . . . , y t } ξ data task “representation”? ξ = φ ( y t ) ˆ 3 Saturday, November 30, 13 3
y t . ? = { y 0 , . . . , y t } ξ data task “representation”? ξ = φ ( y t ) ˆ 3 Saturday, November 30, 13 3
“representation” y t . = { y 0 , . . . , y t } 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) ≥ I ( ξ ; φ ( y t )) R ( u t | y t ) ≤ R ( u t | φ ( y t )) 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ sufficient statistics [r. fisher] 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ ) + β H (ˆ min I ( ξ ; y t ) − I ( ξ ; φ ( y t ) ξ ) | {z } ˆ ξ 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) information bottleneck [n. tishby] 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) ξ ) + 1 t | ˆ β H (ˆ min H ( y ∞ ξ ) 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) ξ ) + 1 t | ˆ β H (ˆ min H ( y ∞ ξ ) actionable information 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) ξ ) + 1 t | ˆ β H (ˆ min H ( y ∞ ξ ) representation = “state” 4 Saturday, November 30, 13 4
“representation” y t . = { y 0 , . . . , y t } I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) ξ ) + 1 t | ˆ β H (ˆ min H ( y ∞ ξ ) function of the past that best predicts future (nuisance- invariants of the) data given available resources 4 Saturday, November 30, 13 4
“representation” I ( ξ ; y t ) = I ( ξ ; φ ( y t ) ) R ( u t | y t ) ≤ R ( u t | φ ( y t )) | {z } ˆ ξ min I ( y t , ˆ ξ ) − β I (ˆ ξ ; ξ ) ξ ) + 1 t | ˆ β H (ˆ min H ( y ∞ ξ ) function of the past that best predicts future (nuisance- invariants of the) data given available resources 4 Saturday, November 30, 13 4
“the past” φ 5 Saturday, November 30, 13 5
“the past” phylogenic data aggregation is encoded in the structure of (nuisances, invariances, φ policies, tradeoffs, tasks); 5 Saturday, November 30, 13 5
“the past” phylogenic data aggregation is encoded in the structure of (nuisances, invariances, φ policies, tradeoffs, tasks); ontogenic data aggregation is continuously integrated into the representation ˆ ξ 5 Saturday, November 30, 13 5
“nuisances” account for almost all uncertainty/variability in visual data some can be removed from the data at the outset: lossless: canonization (e.g., contrast, planar isometries)* co-variant detection/invariant description others have to be sampled/marginalized: e.g., scale, class-specific deformation other have to be “discovered” e.g., occlusion “sufficient exploration” instantiate for a specific data-formation model (LA Model) 6 Saturday, November 30, 13 6
UNMODELED PHENOMENA SENSORS n EO IR SCENE ξ MS ... NUISANCES IMU ν g LIDR y t SENSING ACTION .. CANONIZATION TASK φ ∧ ( y t ) INFERENCE H ( y t +1 | ˆ min ξ t ) - INNOVATION p (ˆ ξ | y t ) g ˆ h (ˆ ξ , ˆ ν ) NUISANCES QUERIES REPRESENTATION g ( u ) ˆ ˆ ξ t ˆ ν CONTROL u t max H ( y t +1 | ˆ ξ t , u ) u 7 Saturday, November 30, 13 7
UNMODELED PHENOMENA SENSORS n EO IR SCENE ξ MS ... NUISANCES IMU ν g LIDR y t SENSING ACTION .. CANONIZATION TASK φ ∧ ( y t ) INFERENCE H ( y t +1 | ˆ min ξ t ) - INNOVATION p (ˆ ξ | y t ) g ˆ h (ˆ ξ , ˆ ν ) NUISANCES QUERIES REPRESENTATION g ( u ) ˆ INFORMATION ˆ ξ t BOTTLENECK ˆ ν CONTROL u t max H ( y t +1 | ˆ ξ t , u ) u 7 Saturday, November 30, 13 7
UNMODELED PHENOMENA SENSORS n EO IR SCENE ξ MS ... NUISANCES IMU ν g LIDR y t SENSING ACTION .. CANONIZATION TASK φ ∧ ( y t ) INFERENCE H ( y t +1 | ˆ min ξ t ) ACTIONABLE - INNOVATION p (ˆ INFORMATION ξ | y t ) INCREMENT g ˆ h (ˆ ξ , ˆ ν ) NUISANCES QUERIES REPRESENTATION g ( u ) ˆ INFORMATION ˆ ξ t BOTTLENECK ˆ ν CONTROL u t max H ( y t +1 | ˆ ξ t , u ) u 7 Saturday, November 30, 13 7
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ( y t ( x ) = κ t ( ρ ( p )) + n t ( x ) ∈ R + ¯ x p ∈ S ⊂ R 3 x = π ( g t p ) , D ⊂ R 2 x I t : D → R + g t ∈ SE (3) 8 Saturday, November 30, 13 8
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ( y t ( x ) = κ t ( ρ ( p )) + n t ( x ) ∈ R + ¯ x p ∈ S ⊂ R 3 x = π ( g t p ) , D ⊂ R 2 x I t : D → R + ξ = { ρ , S } g t ∈ SE (3) 8 Saturday, November 30, 13 8
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ( y t ( x ) = κ t ( ρ ( p )) + n t ( x ) ∈ R + ¯ x p ∈ S ⊂ R 3 x = π ( g t p ) , D ⊂ R 2 x I t : D → R + ξ = { ρ , S } g t ∈ SE (3) g t ∈ SE (3) 8 Saturday, November 30, 13 8
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ( y t ( x ) = κ t ( ρ ( p )) + n t ( x ) ∈ R + ¯ x p ∈ S ⊂ R 3 x = π ( g t p ) , D ⊂ R 2 x I t : D → R + ξ = { ρ , S } κ t : R + → R + g t ∈ SE (3) g t ∈ SE (3) 8 Saturday, November 30, 13 8
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ( y t ( x ) = κ t ( ρ ( p )) + n t ( x ) ∈ R + ¯ x p ∈ S ⊂ R 3 x = π ( g t p ) , D ⊂ R 2 x I t : D → R + ξ = { ρ , S } κ t : R + → R + g t ∈ SE (3) ν t = { n t , π } g t ∈ SE (3) 8 Saturday, November 30, 13 8
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ¯ x D ⊂ R 2 x I t : D → R + g t ∈ SE (3) 9 Saturday, November 30, 13 9
the LA model (lambert-ambient) S ⊂ R 3 ρ : S → R + p 7! ρ ( p ) p ¯ x D ⊂ R 2 y t = h ( g t , ξ , ν t ) + n t x I t : D → R + g t ∈ SE (3) 9 Saturday, November 30, 13 9
complete representation given one or more images, , a representation ˆ y t ξ t is a statistic ˆ such that ξ t = φ ( y t ) 10 Saturday, November 30, 13 10
complete representation given one or more images, , a representation ˆ y t ξ t is a statistic ˆ such that ξ t = φ ( y t ) ξ t , ν t ) , e ∈ G, ν t ∈ V} . φ ∧ ( y t ) = { h ( e, ˆ = L (ˆ ξ t ) 10 Saturday, November 30, 13 10
complete representation given one or more images, , a representation ˆ y t ξ t is a statistic ˆ such that ξ t = φ ( y t ) ξ t , ν t ) , e ∈ G, ν t ∈ V} . φ ∧ ( y t ) = { h ( e, ˆ = L (ˆ ξ t ) i.e., a statistic from which the (maximal invariant of the) images can be “hallucinated” up to an “uninformative” residual 10 Saturday, November 30, 13 10
Recommend
More recommend