the pxd whitebook
play

The PXD Whitebook Carsten Niebuhr Deutsches Elektronen-Synchrotron, - PDF document

The PXD Whitebook Carsten Niebuhr Deutsches Elektronen-Synchrotron, Hamburg, Germany Ivan Vila ICFA Santander, Spain Marca Boronat, Daniel Esperante, Juan Fuster, Carlos Lacasta, Marcel Vos IFIC Valencia, Spain Andrzej Bozek, Pjotr Kapusta,


  1. The PXD Whitebook Carsten Niebuhr Deutsches Elektronen-Synchrotron, Hamburg, Germany Ivan Vila ICFA Santander, Spain Marca Boronat, Daniel Esperante, Juan Fuster, Carlos Lacasta, Marcel Vos IFIC Valencia, Spain Andrzej Bozek, Pjotr Kapusta, Bartlomiej Kisielewski Institute of Nuclear Physics Polish Academy of Science, Krakow,Poland Jie Huang, Dapeng Jin, Zhen’An Liu, Chunjie Wang, Ke Wang, Hao Xu, Jingzhou Zhao IHEP Beijing, China Tobias Barvich, Oksana Brovchenko, Stefan Heindl, Martin Heck, Thomas Müller, Christian Pulvermacher, Hans Jürgen Simonis, Thomas Weiler KIT Karlsruhe, Germany Mainz, Germany Tobias Krauser, Oliver Lipsky, Stefan Rummel, Jochen Schieck Ludwig-Maximilians-University, Munich, Germany Karlheinz Ackermann, Christian Kiesling, Luigi Li Gioi, Andreas Moll, Hans-Günther Moser, Felix Müller, Frank Simon, Max-Planck-Insitute for Physics, Munich, Germany Laci Andricek, Christian Koffmane, Jelena Ninkovic, Rainer Richter Halbleiterlabor der Max-Planck-Gesellschaft, Munich, Germany Daniel Greenwald, Bernhard Ketzer, Igor Konorov, Dmytro Levit, Stephan Paul, Johannes Rauch, Boris Zhuravlev Technical University of Munich, Germany Oscar Alonso, Raimon Casanova, Angel Dieguez, Andreu Montiel, Eva Vilella University of Barcelona, Spain Jochen Dingfelder, Tomasz Hemperek, Ichi Kishishita, Tobias Kleinohl, Manuel Koch, Hans Krüger, Mikhail Lemarenko, Florian Lütticke, Carlos Mariñas, Michael Schnell, Norbert Wermes University of Bonn, Germany Thomas Gessler, Wolfgang Kühn, Sören Lange, David Münchow, Björn Spruck University of Giessen, Germany Ariane Frey, Christian Geisler, Benjamin Schwenker University of Göttingen, Germany Peter Fischer, Christian Kreidl, Ivan Peric, Michael Ritzert University of Heidelberg, Germany Zdenek Dolezal, Zbynek Drasal, Peter Kodys, Peter Kvasnicka, Jan Scheirich Charles University of Prague, Czech Republik edited by C. Kiesling, & H.-G. Moser 1

  2. Version 2, September 2016 2

  3. Sören Lange, Igor Konorov Rainer Richter Hans-Günther Moser Christian Kiesling Stefan Rummel Laci ANdricek Hans Krüger Contents 1 Introduction 5 Hans-Günther Moser 2 System Overview 6 Christian Kiesling 2.1 Belle II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Specifications for the PXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Technology Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Geometrical Layout of the PXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Sensor Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Module Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.7 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.8 Periphery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Description of Components 7 Rainer Richter Hans Krüger Laci Andricek Stefan Rummel Christian Kiesling Hans-Güther Moser Sören Lange Igor Konorov 3.1 The DEPFET Pixel Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 DEPFET principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Sensor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Readout Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.1 Switcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.2 DCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.3 DHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.5 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.6 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.7 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Performance 12 Carlos Mariñas Benjamin Schwenker 5 Operation 13 3

  4. Michael Ritzert NN 5.1 Slow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Assembly, Integration and Installation 14 Carsten Niebuhr NN 6.1 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 Conclusions 15 Christian Kiesling 8 Naming Conventions 16 Manfred Valentan 8.1 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Glossary 17 Acronyms 19 4

  5. Chapter 1 Introduction Hans-Günther Moser This is the introduction 5

  6. Chapter 2 System Overview Christian Kiesling 2.1 Belle II The Belle II detector [1] is 2.2 Specifications for the PXD 2.3 Technology Choice 2.4 Geometrical Layout of the PXD 2.5 Sensor Principle 2.6 Module Concept 2.7 Data Flow 2.8 Periphery 6

  7. Chapter 3 Description of Components Rainer Richter Hans Krüger Laci Andricek Stefan Rummel Christian Kiesling Hans-Güther Moser Sören Lange Igor Konorov 3.1 The DEPFET Pixel Sensor 3.1.1 DEPFET principle 3.1.2 Sensor Design 3.1.3 Properties 3.2 Readout Electronics 3.2.1 Switcher 3.2.2 DCD 3.2.3 DHE 3.3 Module Design the module is..... 3.4 Services Services are... 7

  8. 3.5 Mechanical Design The ladders are mounted.... 3.6 Cooling The PXD is cooled with two phase CO 2 . The IBBelle cooling plant has been copied from the ATLAS IBL plant [2]. Slightly supercooled CO 2 is to the detector. Inside the PXD cooling block or the SVD cooling pipes the CO 2 partially evaporates absorbing the heat by the phase transition. The vapor/liquid mixture returns to the cooling unit where the vapor is liquified in a condensor. The condensor is a plate heat exchanger, its primary circuit is cooled with R404a supplied by a chiller. THe pressure of the CO 2 vpor liquid mixture is regulated by the accumulator. This is a vessel (50 l) partially filled with liquid CO 2 . Using electrical heaters and a cooling spiral supplied with R404a from the chiller the temperature and hence the saturation pressure can be regulated. Due to the wide diameter of the transfer pipes back from the detector to the accumulator the pressure drop in these pipes is negligible and the pressure in the evaporation tubes in the detector equals the accumulator pressure. Hence the boiling temperature in the detector can be regulated precisely with setting the accumulator pressure. On the contrary the tubes from the pumps to the detector are rather narrow, especially close to the detector. This causes a sizable pressure drop (10 bar) which keeps the CO 2 in a supercooled liquid state before it reaches the detector. Fig. 3.2 shows the CO 2 circuit inside IBBelle including accumulator, pumps and tubing needed for servicing (e.g. filling with CO 2 ). An internal bypass allows to operate the unit disconnected from the detector. This allows to adjust the CO 2 temperature to the detector temperature before the circulation is started avoiding thermal shocks. Also, the unit can be operated and commissioned without being connected to the external piping. Technical data of IBBelle are listed in table 3.1. Table 3.1: Technical data of IBBelle Temperature Range -35 o C - +25 o C Cooling capacity at -30 o C 3000 W CO 2 flow 0 - 60 g/s Total electrical power 7 kW Electrical specifications 400V 3-phase Volume accumulator 52 l Volume IBBelle 55 l System volume (incl. transfer line and detector) 64 l max. CO 2 filling 23 kg max. pressure 80 bar Content R404a 12 l Weight 2.3 t IBBelle is located in the B1 floor in a room next to Tsukuba hall. The CO 2 is transfered too and from a Junction Box (JB) located close the Belle II via concentric foam insulated pipes of 32 m length. The supercooled liquid CO 2 flows in the inner tube to the JB, the 2-phase CO 2 returns to IBBelle in the outer tube. The JB serves to control pressure and temperature of the CO 2 before it enters the detector. Furthermore the CO 2 flow can be disconnected from the detector for maintenance and commissioning. In that case an internal bypass with an electrical heater and a restricion valve can be used to emulate the detector. After the JB the CO 2 piping is split into two branches serving the manifold boxes serving the forward and backward parts of the detector. In the manifold boxes the CO 2 flow is split into the different cooling branches (12 alltogether). From the manifold box each individual branch is served by 9 m long vaccuum insulated concentric flexible lines up to the dock boxes. From there the last 1.3 m (backward) 8

More recommend