the loewner framework for model reduction of flow
play

The Loewner Framework for Model Reduction of Flow Equations - PowerPoint PPT Presentation

The Loewner Framework for Model Reduction of Flow Equations Matthias Heinkenschloss Department of Computational and Applied Mathematics Rice University, Houston, Texas heinken@rice.edu February 18, 2020 Workshop Mathematics of Reduced Order


  1. The Loewner Framework for Model Reduction of Flow Equations Matthias Heinkenschloss Department of Computational and Applied Mathematics Rice University, Houston, Texas heinken@rice.edu February 18, 2020 Workshop Mathematics of Reduced Order Models ICERM, Brown University, February 17 - 21, 2020 Joint work with A. C. Antoulas (ECE, Rice U. & MPI Magdeburg) and I. V. Gosea (MPI Magdeburg) Funded in part by NSF grants CCF-1816219 and DMS-1819144 Matthias Heinkenschloss Feb. 18, 2020 1

  2. Motivation ◮ Full order model (FOM) (typically discretization of system of PDEs) E d dt y ( t ) = Ay ( t ) + F ( y ( t )) + Bu ( t ) with state y ( t ) ∈ R n , n ≫ 1 , input u ( t ) ∈ R m , and output z ( t ) = Cy ( t ) + Du ( t ) ∈ R p . ◮ Projection based reduced order model (ROM): Matrices V , W ∈ R n × r , r ≪ n ; ROM W T EV d y ( t ) = W T AV � y ( t ) + W T F ( V � y ( t )) + W T Bu ( t ) dt � y ( t ) ∈ R r , r ≪ n , input u ( t ) ∈ R m , and output with state � y ( t ) + Du ( t ) ∈ R p . � z ( t ) = CV � ◮ Goal: Input-to-output map u �→ � z of ROM approximates input-to-output map u �→ z of FOM. ◮ Notation: States y , input u , output z . Matthias Heinkenschloss Feb. 18, 2020 2

  3. Many ROM methods, incl. ◮ Proper Orthogonal Decomposition (POD) (e.g., books and survey articles [Gubisch and Volkwein, 2017], [Hesthaven et al., 2015], [Quarteroni et al., 2016]). ◮ Reduced Basis (RB) methods (e.g., books and survey articles [Haasdonk, 2017], [Hesthaven et al., 2015], [Quarteroni et al., 2016], [Rozza et al., 2008]). ◮ Balanced Truncation and Balanced POD (e.g., book [Antoulas, 2005] and survey articles [Benner and Breiten, 2017], [Rowley and Dawson, 2017]). ◮ Rational Interpolation (e.g., book [Antoulas et al., 2020a] and survey article [Beattie and Gugercin, 2017]). All require access to E , A , . . . to generate projection matrices E = W T EV , � A = W T AV , . . . V , W ∈ R n × r , then generate ROM � This talk: Loewner framework ◮ Constructs ROM � E , � A , . . . directly from data. ◮ For LTI systems [Antoulas et al., 2020a], [Antoulas et al., 2017]; recent work on descriptor systems, incl. Oseen equations (e.g., [Antoulas et al., 2020b], [Gosea et al., 2020]). ◮ Extension to quadratic-bilinear systems [Gosea and Antoulas, 2018], Burger’s equation [Antoulas et al., 2018]. Matthias Heinkenschloss Feb. 18, 2020 3

  4. Loewner for Linear Time-Invariant (LTI) Systems ◮ Consider linear time-invariant system E d dt y ( t ) = Ay ( t ) + b u ( t ) with state y ( t ) ∈ R n , n ≫ 1 , input u ( t ) ∈ R , and output z ( t ) = c T y ( t ) + d u ( t ) ∈ R . Example: Oseen equations. ◮ To simplify presentation consider case of single input b ∈ R n , u ( t ) ∈ R , and single output c ∈ R n , z ( t ) ∈ R (SISO). Multiple inputs, multiple outputs (MIMO) can be handled via so-called left and right tangential directions, but is a bit more technical and requires more notation. Matthias Heinkenschloss Feb. 18, 2020 4

  5. Frequency Domain ◮ Frequency domain s ∈ i R s E y ( s ) = Ay ( s ) + b u ( s ) , z ( s ) = c T y ( s ) . From now on we work in frequency domain; use same notation y , u , z for variables in frequency domain. ◮ Transfer function H ( s ) = c T ( s E − A ) − 1 b . E = W T EV , � A = W T AV , � b = W T b , � c = V T c , ◮ Seek ROM � s � y ( s ) = � y ( s ) + � E � A � b u ( s ) , c T � � z ( s ) = � y ( s ) + d u ( s ) , so that transfer function c T ( s � b ≈ H ( s ) = c T ( s E − A ) − 1 b . � E − � A ) − 1 � H ( s ) = � Matthias Heinkenschloss Feb. 18, 2020 5

  6. Interpolation ◮ Given distinct frequencies µ 1 , . . . µ r , λ 1 , . . . λ r ∈ C , want ROM s.t. c T ( µ j � H ( µ j ) = H ( µ j ) = c T ( µ j E − A ) − 1 b , j = 1 , . . . r, E − � A ) − 1 � b = � � c T ( λ j � H ( λ j ) = H ( λ j ) = c T ( λ j E − A ) − 1 b , j = 1 , . . . r. E − � A ) − 1 � b = � � ◮ Theorem: Interpolation guaranteed if ROM projection matrices V , W satisfy ( λ j E − A ) − 1 b ∈ R ( V ) , j = 1 , . . . r, � c T ( µ j E − A ) − 1 � T ∈ R ( W ) , j = 1 , . . . r. ◮ Can choose (assume these have full rank) � � ( λ 1 E − A ) − 1 b , . . . , ( λ r E − A ) − 1 b ∈ C n × r , V =   c T ( µ 1 E − A ) − 1  .  W ∗ =  ∈ C r × n . .  . c T ( µ r E − A ) − 1 Matthias Heinkenschloss Feb. 18, 2020 6

  7. Elementary identities Recall H ( s ) = c T ( s E − A ) − 1 b . c T ( µ E − A ) − 1 E ( λ E − A ) − 1 b � � 1 c T ( µ E − A ) − 1 ( µ − λ ) E ( λ E − A ) − 1 b = µ − λ � c T ( µ E − A ) − 1 � � � 1 ( λ E − A ) − 1 b = ( µ E − A ) − ( λ E − A ) µ − λ � � 1 = H ( λ ) − H ( µ ) . µ − λ c T ( µ E − A ) − 1 A ( λ E − A ) − 1 b = − c T ( µ E − A ) − 1 ( µ E − A ) ( λ E − A ) − 1 b + µ c T ( µ E − A ) − 1 E ( λ E − A ) − 1 b = − H ( λ ) + µ c T ( µ E − A ) − 1 E ( λ E − A ) − 1 b � � 1 = − H ( λ ) + µ H ( λ ) − H ( µ ) µ − λ � � 1 = λ H ( λ ) − µ H ( µ ) . µ − λ Matthias Heinkenschloss Feb. 18, 2020 7

  8. � � ( λ 1 E − A ) − 1 b , . . . , ( λ r E − A ) − 1 b ∈ C n × r , If V =   c T ( µ 1 E − A ) − 1   . W ∗ =  ∈ C r × n , .  . c T ( µ r E − A ) − 1 (recall H ( s ) = c T ( s E − A ) − 1 b ) then   H ( µ 1 ) − H ( λ 1 ) H ( µ 1 ) − H ( λ r ) · · · µ 1 − λ 1 µ 1 − λ r   . . ... �   E = W ∗ EV = − def . . = − L , . .   H ( µ r ) − H ( λ 1 ) H ( µ r ) − H ( λ r ) · · · µ r − λ 1 µ r − λ r   µ 1 H ( µ 1 ) − H ( λ 1 ) λ 1 µ 1 H ( µ 1 ) − H ( λ r ) λ r · · · µ 1 − λ 1 µ 1 − λ r   . . ... �   A = W ∗ AV = − def . . = − L s , . .   µ r H ( µ r ) − H ( λ 1 ) λ 1 µ r H ( µ r ) − H ( λ r ) λ r · · · µ r − λ 1 µ r − λ r b = W ∗ b = [ H ( µ 1 ) , . . . , H ( µ r )] T , c = V ∗ c = [ H ( λ 1 ) , . . . , H ( λ r )] T . � � Matthias Heinkenschloss Feb. 18, 2020 8

  9. � � ( λ 1 E − A ) − 1 b , . . . , ( λ r E − A ) − 1 b ∈ C n × r , If V =   c T ( µ 1 E − A ) − 1   . W ∗ =  ∈ C r × n , .  . c T ( µ r E − A ) − 1 (recall H ( s ) = c T ( s E − A ) − 1 b ) then   H ( µ 1 ) − H ( λ 1 ) H ( µ 1 ) − H ( λ r ) · · · µ 1 − λ 1 µ 1 − λ r   . . ... �   E = W ∗ EV = − def . . = − L , . .   H ( µ r ) − H ( λ 1 ) H ( µ r ) − H ( λ r ) · · · µ r − λ 1 µ r − λ r   µ 1 H ( µ 1 ) − H ( λ 1 ) λ 1 µ 1 H ( µ 1 ) − H ( λ r ) λ r · · · µ 1 − λ 1 µ 1 − λ r   . . ... �   A = W ∗ AV = − def . . = − L s , . .   µ r H ( µ r ) − H ( λ 1 ) λ 1 µ r H ( µ r ) − H ( λ r ) λ r · · · µ r − λ 1 µ r − λ r b = W ∗ b = [ H ( µ 1 ) , . . . , H ( µ r )] T , c = V ∗ c = [ H ( λ 1 ) , . . . , H ( λ r )] T . � � Only need data ( µ j , H ( µ j )) , ( λ j , H ( λ j )) , j = 1 , . . . , r , to construct ROM � E , � A , � b , � c ! Matthias Heinkenschloss Feb. 18, 2020 8

  10. Loewner Framework ◮ Given distinct frequencies µ 1 , . . . µ k , λ 1 , . . . λ k ∈ C and transfer function measurements H ( µ 1 ) , . . . , H ( µ k ) , H ( λ 1 ) , . . . , H ( λ k ) ∈ C , ◮ use Loewner matrix   H ( µ 1 ) − H ( λ 1 ) H ( µ 1 ) − H ( λ k ) · · · µ 1 − λ 1 µ 1 − λ k   . . ...   . .  ∈ C k × k L = . .  H ( µ k ) − H ( λ 1 ) H ( µ k ) − H ( λ k ) · · · µ k − λ 1 µ k − λ k and shifted Loewner matrix   µ 1 H ( µ 1 ) − H ( λ 1 ) λ 1 µ 1 H ( µ 1 ) − H ( λ k ) λ k · · · µ 1 − λ 1 µ 1 − λ k   . . ...   ∈ C k × k  . . L s = . .  µ k H ( µ k ) − H ( λ 1 ) λ 1 µ k H ( µ k ) − H ( λ k ) λ k · · · µ k − λ 1 µ k − λ k ◮ to directly compute ROM � E , � A ∈ R r × r , � c ∈ R r , such that b , � c T ( µ j � H ( µ j ) ≈ H ( µ j ) = c T ( µ j E − A ) − 1 b , j = 1 , . . . k, A ) − 1 � E − � b = � � c T ( λ j � H ( λ j ) ≈ H ( λ j ) = c T ( λ j E − A ) − 1 b , j = 1 , . . . k. E − � A ) − 1 � b = � � Matthias Heinkenschloss Feb. 18, 2020 9

Recommend


More recommend