the lavrentiev phenomena
play

The Lavrentiev phenomena by Alessandro Ferriero CMAP Ecole - PowerPoint PPT Presentation

The Lavrentiev phenomena by Alessandro Ferriero CMAP Ecole Polytechnique A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr p.1/10 Abstract 1. The Lavrentiev phenomenon 2. The Mani example 3. A class of


  1. The Lavrentiev phenomena by Alessandro Ferriero – CMAP Ecole Polytechnique – A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.1/10

  2. Abstract • 1. The Lavrentiev phenomenon • 2. The Manià example • 3. A class of Lagrangians without Lavrentiev phenomenon • 4. A multi-dimensional variational problem • 5. The case of higher-order Lagrangians • 6. " + ∞ -values" phenomenon A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.2/10

  3. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  4. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . The action I exhibits the Lavrentiev phenomenon (LP) whenever AC ∗ [ a,b ] I < inf Lip ∗ [ a,b ] I . inf A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  5. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . The action I exhibits the Lavrentiev phenomenon (LP) whenever AC ∗ [ a,b ] I < inf Lip ∗ [ a,b ] I . inf • We cannot calculate a minimizer by using a standard finite-element method. • The set of trajectories is a fundamental part of the physical model. A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  6. The Manià example • The action Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, I ( x ) = − 1 with boundary conditions x ( − 1) = − 1 , x (1) = 1 , exhibits (LP) , i.e. AC ∗ [0 , 1] I < inf Lip ∗ [0 , 1] I . inf √ 3 ( ¯ x ( t ) = t is a minimizer for I in AC ∗ [ − 1 , 1] .) A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.4/10

  7. The Manià example • The action Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, I ( x ) = − 1 with boundary conditions x ( − 1) = − 1 , x (1) = 1 , exhibits (LP) , i.e. AC ∗ [0 , 1] I < inf Lip ∗ [0 , 1] I . inf √ 3 ( ¯ x ( t ) = t is a minimizer for I in AC ∗ [ − 1 , 1] .) • (LP) persists under perturbations of the Lagrangians: Z 1 { x ′ 6 ( t )[ x 3 ( t ) − t ] 2 + ǫ | x ′ ( t ) | 5 / 4 } dt, x ( − 1) = − 1 , x (1) = 1 , − 1 exhibits (LP) for any "small" ǫ . • (LP) persists under perturbations of the boundary conditions: Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, x ( t − 1 ) = x − 1 , x ( t 1 ) = x 1 , − 1 where ( t − 1 , x − 1 ) ∈ B (( − 1 , − 1) , ǫ ) , ( t 1 , x 1 ) ∈ B ((1 , 1) , ǫ ) , exhibits (LP) for any "small" ǫ . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.4/10

  8. A class of Lagrangians without (LP) Theorem [A. Cellina, A. F., E.M. Marchini]. Let x : [ a, b ] → R N be a trajectory in AC [ a, b ] . Assume that: 1. L 1 ( x, ξ ) , · · · , L m ( x, ξ ) : Im [ x ] × R N → R are continuous and convex in ξ ; 2. ψ 1 , · · · , ψ m : [ a, b ] × Im [ x ] → [ c, + ∞ ) are continuous, with c > 0 ; Z b m X L i ( x ( t ) , x ′ ( t )) ψ i ( t, x ( t )) dt . 3. I ( x ) = a i =1 Then, given ǫ > 0 , there exists a Lipschitzian trajectory x ǫ , a reparameterization of x , such that x ( a ) = x ǫ ( a ) , x ( b ) = x ǫ ( b ) and I ( x ǫ ) ≤ I ( x ) + ǫ . � A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.5/10

  9. A class of Lagrangians without (LP) Theorem [A. Cellina, A. F., E.M. Marchini]. Let x : [ a, b ] → R N be a trajectory in AC [ a, b ] . Assume that: 1. L 1 ( x, ξ ) , · · · , L m ( x, ξ ) : Im [ x ] × R N → R are continuous and convex in ξ ; 2. ψ 1 , · · · , ψ m : [ a, b ] × Im [ x ] → [ c, + ∞ ) are continuous, with c > 0 ; Z b m X L i ( x ( t ) , x ′ ( t )) ψ i ( t, x ( t )) dt . 3. I ( x ) = a i =1 Then, given ǫ > 0 , there exists a Lipschitzian trajectory x ǫ , a reparameterization of x , such that x ( a ) = x ǫ ( a ) , x ( b ) = x ǫ ( b ) and I ( x ǫ ) ≤ I ( x ) + ǫ . � • The class of Lagrangians L ( t, x, x ′ ) = P m i =1 L i ( x, x ′ ) ψ i ( t, x ) does not exhibit (LP) for any boundary conditions; it includes the autonomous Lagrangians. R b • Condition 2. is used only to prove that a L i ( x ( t ) , x ′ ( t )) dt are finite. The Theorem can be proved under the more general condition: Z b L i ( x ( t ) , x ′ ( t )) dt < + ∞ , for any i . 2 ′ . ψ i ( t, x ) ≥ 0 and a • We cannot drop condition 2 ′ .: setting m = 1 , ψ 1 ( t, x ) = [ x 3 − t ] 2 and L 1 ( x, x ′ ) = x ′ 6 , we obtain the Lagrangian of Manià, ψ 1 ≥ 0 and R 1 R 1 0 1 / (3 6 t 4 ) dt = + ∞ . 0 L 1 (¯ x ( t ) , ¯ x ′ ( t )) dt = A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.5/10

  10. A multi-dimensional variational problem without (LP) Let L : R N × R N → R be a radial Lagrangian with respect to the gradient, i.e. there exists a function h : R N × [0 , ∞ ) → R such that L ( u, ξ ) = h ( u, | ξ | ) . Consider the action Z I ( u ) = L ( u ( x ) , ∇ u ( x )) dx S [ a,b ] where S [ a, b ] = { x ∈ R N : 0 < a ≤ | x | ≤ b } . We denote with Lip r ( S [ a, b ]) and W 1 , 1 ( S [ a, b ]) respectively the sets r { u ∈ Lip ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } , { u ∈ W 1 , 1 ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.6/10

  11. A multi-dimensional variational problem without (LP) Let L : R N × R N → R be a radial Lagrangian with respect to the gradient, i.e. there exists a function h : R N × [0 , ∞ ) → R such that L ( u, ξ ) = h ( u, | ξ | ) . Consider the action Z I ( u ) = L ( u ( x ) , ∇ u ( x )) dx S [ a,b ] where S [ a, b ] = { x ∈ R N : 0 < a ≤ | x | ≤ b } . We denote with Lip r ( S [ a, b ]) and W 1 , 1 ( S [ a, b ]) respectively the sets r { u ∈ Lip ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } , { u ∈ W 1 , 1 ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } . • Let L be continuous and convex with respect to the gradient. Then, inf I = Lip r ( S [ a,b ]) I . inf W 1 , 1 ( S [ a,b ]) r A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.6/10

  12. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

  13. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . I exhibits the Lavrentiev phenomenon (LP) whenever inf I < inf I . W ν +1 , 1 W ν +1 , ∞ ( a,b ) ( a,b ) ∗ ∗ A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

  14. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . I exhibits the Lavrentiev phenomenon (LP) whenever inf I < inf I . W ν +1 , 1 W ν +1 , ∞ ( a,b ) ( a,b ) ∗ ∗ • Autonomous higher-order Lagrangians can present (LP) : Z 1 | x ′′ ( t ) | 7 [3 x ( t ) − 3 | x ′ ( t ) − 1 | 2 − 2 | x ′ ( t ) − 1 | 3 ] 2 dt, I ( x ) = 0 with boundary conditions x (0) = 0 , x (1) = 5 / 3 , x ′ (0) = 1 , x ′ (1) = 2 [A.V. Sarychev, 1997]. A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

Recommend


More recommend