The Kicking of Black Holes Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, USA Stephen Hawking 75 th Birthday Conference, Cambridge, UK, July 4, 2017
GW150914 Credit: LIGO Scientific Collaboration
GW150914: Energy, Angular Momentum and Linear Momentum Linear Mom. / M (km/s) 140 km/s ~4% Energy / M (%) "I ✓Z t Z t Z t 0 ! # r 2 ◆ dJ i Ψ 4 dt 00 dt 0 ˆ Ψ 4 dt 0 d Ω dt = − lim 16 π Re J i r !1 Angular Mom. / M 2 �1 �1 �1 0.4 Z t 2 dP i r 2 � � I l i � Ψ 4 dt 0 � dt = lim d Ω � � 16 π r !1 � � �1 Time (M) KICK: Asymmetric beaming of gravitational radiation emission from un-equal masses and/or from spin asymmetries
The Making of a Kick: Fitchet 1983 dP i 63 h d 4 I iab d 3 I ab d 3 I ipa d 3 S qb dt = 2 dt 3 i + 16 45 h ✏ ipq dt 3 i dt 4 dt 3 • Newtonian Binary • Lowest order momentum flux • Kick is the result of a “beating” of the mass quadrupole moment against the mass octupole and current quadrupole moments Wiseman, PRD 46, 1517 (1992)] ⌘ 4 ⇣ ⌘ ⇣ f ( q ) 2( m 1 + m 2 ) V kick = 1 , 480 km/s m 1 > m 2 f max r term v 1 < v 2 f ( q ) = q 2 (1 − q ) q = m 1 m 2 (1+ q ) 5
The Making of a Black Hole Kick ⌘ 5 η 2 ⇣ m ˙ E ≈ r ⌘ 5 δ m ⌘ 1 / 2 η 2 ⇣ m ⇣ m ˙ P N ≈ r m r ⌘ 1 / 2 η 2 ⇣ m ⌘ 5 ⇣ m ˙ [ | ˆ r × ∆ | + | ˆ v · ∆ | ] P SO ≈ r r Kidder PRD 52, 621 (1995) m = m 1 + m 2 ˙ dP P ✓ δ m ◆ ⇣ m ⌘ 1 / 2 m 1 m 2 m , a ≈ ∼ ˙ dE r = E η m 2 ✓ dP ◆ ✓ ∆ E ◆ δ m = m 1 − m 2 V kick c ∼ dE m = ( a 2 m 2 − a 1 m 1 ) /m ∆ ✓ dP/dE ◆ ✓ ∆ E/m ◆ 180 km/s ∼ 0 . 02 0 . 03
The Role of Numerical Relativity Credit: LIGO
Generalized Harmonic Coordinates 2005 Gundlach: 2002 Garfinkle: 2005 Pretorius: Constraint Damping & HC HC for simulating BBH Inspiral & Merger 1992 Choptuik generic singularities AMR Pretorius, PRL 95, 121101 (2005) Constraint Damping Source Functions Principal Hyperbolic Part d + Γ bd c Γ ac d + κ [ n ( a C b ) − 1 1 2 g cd g ab , cd + g cd (, a g b ) d , c + H ( a , b ) − H d Γ ab 2 g ab n d C d ] = 0
BSSN Formulation ! ! ∂ t A = − E − ∇Φ ADM E = −∇ 2 ! ! ! ! ∂ t A + ∇∇⋅ A − 4 π j h ij K ij ! Γ = ∇⋅ A ! ! ∂ t A = − E − ∇Φ φ Γ i h ij A ij K E = −∇ 2 ! ! ! ∂ t A + ∇Γ − 4 π j 1999 Baumgarte, Shapiro ∂ t Γ = −∇ 2 Φ − 4 π ρ 1995 Shibata, Nakamura
Moving Punctures Campanelli et al, PRL 96, 111101 (2006) Baker et al, PRL 96, 111102 (2006) Non-moving Moving ∂ t α = − 2 α K ∂ t α = β i ∂ i α − 2 α K 1+log Slicing [1995 Bona et al] ∂ t β i = 3 ∂ t β i = ξ B i − n B i 4 α Ψ 0 Γ i − η B i − ζ β j ∂ j Γ i − η B i ∂ t B i = χ ∂ t Γ i ∂ t B i = ∂ t Gamma-driver shift [2003 Alcubierre et al]
Kicks from Un-equal Mass & Non-Spinning BHs What is going on! 300 250 h1 h2 200 h3 v (km/s) 150 100 50 0 0 100 200 300 t (M ADM ) 300 250 r 0 = 6.0 M 200 r 0 = 7.0 M v (km/s) 150 r 0 = 8.0 M 100 50 RIT 0 PN+CLA: Sopuerta et al PRD 74, 124010 (2006) 0 100 200 300 400 500 t (M ADM ) Num Rel:Gonzalez et al PRL 98, 091101 (2006) NASA-GSFC Penn State Damour & Gapakumar Hughes et al V = 750 km/s (4 η ) 2 p 1 − 4 η (1 − 0 . 93 η ) Event m 1 m 2 eta V kick (km/s) V max = 175 km/s at η = 0 . 195 GW150914 36 29 0.247 60.8 Final Spin: GW151226 14 8 0.231 137.5 GW170104 32 19 0.234 130.8 a f = 0 . 6 (4 η ) + 0 . 09
The Anti-Kick Rezzolla, Macedo, Jaramillo, PRL 104, 221101 (2010) Anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil.
Kicks from Equal Mass & Aligned Spinning BHs Herrmann, Hinder, Shoemaker, PL, Matzner, ApJ 661, 430 (2007) 400 h=1/40 h=1/35 h=1/32 V (km/s) 300 200 100 0.2 0.3 0.4 0.5 0.6 0.7 0.8 spin parameter a 100 all modes <2, − 2|2, − 1> 1e2 <2,2|2,1> V x (km/s) V x (km/s) 80 <2, − 2|2, − 1> <3, − 3|3, − 2> <3,3|3,2> 1e1 60 top 2 <2,2|3,3> 1e0 40 1e − 1 <2, − 1|3, − 2> 20 <2,1|3,2> <2, − 2|3, − 1> 0 1e − 2 <2,2|3,1> 200 <2, − 2|2, − 1> all modes 1e2 <2,2|2,1> V y (km/s) V y (km/s) 150 <2, − 2|3, − 3> <2, − 2|2, − 1> 1e1 <2,2|3,3> <3,3|4,4> 100 top 2 1e0 50 1e − 1 <2,1|3,2> <2, − 1|3, − 2> 0 1e − 2 0 10 20 30 40 100 150 200 sorted contributing mode overlaps time (M)
Generic BH Spins v x (km/s) 75 50 25 0 v y (km/s) 300 200 100 0 v z (km/s) 900 600 300 0 0 15 30 45 60 75 90 θ (degrees) Herrmann, et al PRD 76, 084032 (2007) Campanelli, et al ApJL, 659, 5 (2007) Koppitz, et al PRL, 99, 041102 (2007)
Super-Kicks Gonzalez, et al, PRL, 98, 231101 (2007) Hyperbolic Encounters Campanelli, et al, PRL, 98, 231102 (2007) Healy, et al PRL, 102, 041101 (2009)
Anatomy of a Superkick 22 ( θ , φ ) + λ ¯ Ψ 4 = κ F ( t ) Y − 2 F ( t ) Y − 2 2 − 2 ( θ , φ ) Z t 2 dt = r 2 � � dE 16 π ( κ 2 + λ 2 ) � � F ( t 0 ) dt 0 � � � � �1 Z t 2 r 2 � � dP dt = 2 16 π ( κ 2 − λ 2 ) � � F ( t 0 ) dt 0 � � 3 � � �1 ˙ ! ✓ ∆ E ◆ ≈ c ( κ 2 − λ 2 ) ✓ ∆ E ◆ P V kick c ≈ ( κ 2 + λ 2 ) ˙ m m E ✓ ( κ 2 − λ 2 ) / ( κ 2 + λ 2 ) ◆ ✓ ∆ E/m ◆ V kick 2 , 160 km/s ≈ 0 . 4 0 . 03 Brugmann et al, PRD 77, 124047 (2008)
The Role of Numerical Relativity • Phenomenological and EOB waveform models • Fitting Formulas for Final • Spin • Mass • Kick Lousto et al, CQG 27, 114006 (2010)
The Escape Velocity Kick Problem Superkicks Spins || ang. mom. Unequal mass, non-spinning Merritt et al APJ (2004)
Implications of Spin Alignment Spins aligned with orbital ang. mom. if inspiral • driven by torques from a circumbinary disc. Spin orientations closer to random if inspiral • driven by stellar interactions or chaotic accretion. Blecha et al, MNRAS 456, 961 (2016)
Detecting Recoiling Black Holes Recoiling supermassive BH: Carries with it the inner parts of the accretion disk. • Accretes gas for 10 5-6 years, appearing quasar-like. • Travels away from the center of the host galaxy. • Potentially capturing more gas along the way. • Observational Signatures: A quasar spatially offset from the center of its host galaxy • Broad emission lines in a quasar spectrum with different velocity from that • of the host galaxy. Caveats: The quasar could be in a disturbed/interacting/post-merger galaxy with the BH • not settled down yet. Broad emission lines of quasars are notoriously asymmetric, thus difficult to • define and measure their velocity shift.
QSO 3C 186: A gravitational wave recoiling black hole? M. Chiaberge, et al, A&A 600, A57 (2017) HST imaging shows that the AGN is offset by 1.3 ± 0.1 arcsec (i.e. 11 kpc) • from to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by - • 2,140 ± 390 km/s with respect to the narrow lines. Host galaxy displays a distorted morphology with possible tidal features • that are typical of the late stages of a galaxy merger.
QSO J0927+2943: Recoiling or binary black hole candidate? R. Decarli, et al, MNRAS 445, 1558 (2014) Komossa (2008): • Two sets of optical emission lines One set very narrow and a second set of broad • Balmer and broad high-ionization forbidden. The second are blueshifted by 2,650 km/s • relative to the narrow emission lines. The recoiling/binary black hole scenarios are ruled out by the clear detection of a galactic–scale molecular gas reservoir at the same redshift of the QSO broad lines
Black Holes Kicks as New Gravitational Wave Observations D. Gerosa, C.J. Moore, PRL 117, 011101 (2016) 2 n = 0 . 5 c n = − 0 . 5 c M → M (1 + ~ n ) v k · ˆ v k · ˆ v k · ~ v k · ˆ n = 0 v k · ˆ n = 0 1 h + 0 − 1 − 2 2 1 h × 0 − 1 − 2 0 50 100 150 200 250 0 50 100 150 200 250 t/M t/M ∆ M r M r ≈ 0 . 322 ρ r
Conclusions: Gravitational Wave Astronomy is here • Numerical Relativity is a tool for astronomical • discoveries BH holes kicks are an excellent candidate for • multi-messenger astrophysics
Recommend
More recommend