the hodgkin huxley equations and analytical
play

The Hodgkin-Huxley Equations and Analytical Approximations for them - PowerPoint PPT Presentation

The Hodgkin-Huxley Equations and Analytical Approximations for them Peter Schuster Institut fr Theoretische Chemie und Molekulare Strukturbiologie der Universitt Wien Seminar of the MPI for Mathematics in Science Leipzig, 22.07.2004


  1. The Hodgkin-Huxley Equations and Analytical Approximations for them Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Seminar of the MPI for Mathematics in Science Leipzig, 22.07.2004

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... The human brain 10 11 neurons connected by � 10 13 to 10 14 synapses

  4. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... A single neuron signaling to a muscle fiber

  5. B A Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  6. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  7. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  8. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... 1 d V = − − − − − − 3 4 ( ) ( ) ( ) I g m h V V g n V V g V V Na Na K K l l d t C M dm = α − − β Hogdkin-Huxley OD equations ( 1 ) m m m m dt dh = α − − β ( 1 ) h h h h dt dn = α − − β ( 1 ) n n n n dt A single neuron signaling to a muscle fiber

  9. Gating functions of the Hodgkin-Huxley equations

  10. Temperature dependence of the Hodgkin-Huxley equations

  11. 1 d V = − − − − − − 3 4 ( ) ( ) ( ) I g m h V V g n V V g V V Na Na K K l l d t C M dm = α − − β ( 1 ) m m m m dt dh = α − − β ( 1 ) h h h h dt dn = α − − β ( 1 ) n n n n dt Hogdkin-Huxley OD equations Hhsim.lnk Simulation of space independent Hodgkin-Huxley equations: Voltage clamp and constant current

  12. ∂ ∂ 2 1 V V = + − + − + − π 3 4 ( ) ( ) ( ) 2 C g m h V V g n V V g V V r L ∂ ∂ 2 Na Na K K l l R x t ∂ m = α − − β ( 1 ) m m Hodgkin-Huxley PDEquations ∂ m m t ∂ h = α − − β ( 1 ) Travelling pulse solution: V ( x,t ) = V ( � ) with h h ∂ h h t � = x + � t ∂ n = α − − β ( 1 ) n n ∂ n n t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  13. [ ] 2 1 d V d V = θ + − + − + − π 3 4 ( ) ( ) ( ) 2 C g m h V V g n V V g V V r L ξ ξ 2 M Na Na K K l l R d d Hodgkin-Huxley PDEquations d m θ = α − − β ( 1 ) m m ξ m m d Travelling pulse solution: V ( x,t ) = V ( � ) with d h θ = α − − β ( 1 ) h h � = x + � t ξ h h d d n θ = α − − β ( 1 ) n n ξ n n d Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  14. 100 50 ] V m [ V 0 -50 1 2 3 4 5 6 � [cm] T = 18.5 C; θ = 1873.33 cm / sec

  15. T = 18.5 C; θ = 1873.3324514717698 cm / sec

  16. T = 18.5 C; θ = 1873.3324514717697 cm / sec

  17. 40 30 20 ] V m [ 10 V 0 -10 6 8 10 12 14 16 18 � [cm] T = 18.5 C; θ = 544.070 cm / sec

  18. T = 18.5 C; θ = 554.070286919319 cm/sec

  19. T = 18.5 C; θ = 554.070286919320 cm/sec

  20. Propagating wave solutions of the Hodgkin-Huxley equations

  21. FitzHugh-Nagumo model of the Hodgkin-Huxley equations V ...... potential ; Y ...... refractory variable

  22. FitzHugh-Nagumo model and ist approximations

  23. FitzHugh-Nagumo equation: reduced model

  24. FitzHugh-Nagumo equation: reduced model

  25. FitzHugh-Nagumo model and ist approximations

  26. 2 X 1 0 -1 -2 1.0 0.5 0 -0.5 -1.0 s

  27. FitzHugh-Nagumo equation: broken linear model

  28. V, dV/d � Close-up of the relaxation oscillation as used in the calculations of period and pulse amplitude in the Reduced Broken-Linear Model

  29. FitzHugh-Nagumo pulse propagation

  30. Reduced Hodgkin-Huxley equations V , m ...... fast variables , n , h ...... slow variables

  31. V �

  32. 0 0 a 0.1 0.005 0.2 0.3 b 0.010 0.6 0.015 0.4 0.6 � 0.020 0.2 0.4 0.020 � 0.015 0 0.2 0.010 0 b 0 0.005 0.1 0.2 a 0 0.3

  33. References Paul E. Phillipson, Peter Schuster, Dynamics of relaxation oscillations , Int.J.Bifurcation and Chaos 11 :1471-1481, 2001 Paul E. Phillipson, Peter Schuster, Bistability of harmonically forced relaxation oscillations , Int.J.Bifurcation and Chaos 12 :1295-1307, 2002 Paul E. Phillipson, Peter Schuster, An analytic picture of neuron oscillations , Int.J.Bifurcation and Chaos 14 :1539-1548, 2004 Paul E. Phillipson, Peter Schuster, A comparative study of the Hodgkin- Huxley and FitzHugh-Nagumo models of neuron pulse propagation , Int.J.Bifurcation and Chaos, submitted 2004

  34. Coworker Paul Phillipson , Department of Physics, University of Colorado, Boulder, CO Österreichische Akademie Universität Wien der Wissenschaften Acknowledgement of support Österreichische Akademie der Wissenschaften, Universität Wien and University of Colorado

  35. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

Recommend


More recommend