the excitation spectrum of the bose gas in the gross
play

The excitation spectrum of the Bose gas in the Gross-Pitaevskii - PowerPoint PPT Presentation

The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime Serena Cenatiempo - Gran Sasso Science Institute, LAquila joint work with Chiara Boccato, Christian Brennecke and Benjamin Schlein Quantissima in the Serenissima III


  1. The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime Serena Cenatiempo - Gran Sasso Science Institute, L’Aquila joint work with Chiara Boccato, Christian Brennecke and Benjamin Schlein Quantissima in the Serenissima III Venice - August 22, 2019

  2. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results The Gross-Pitaevskii regime Consider N bosons in a cubic box Λ described by � N � N � � N 2 V H N = − ∆ x i + N ( x i − x j ) , | Λ | = 1 i =1 i < j ◮ If V ( x ) has scattering length a , then N 2 V ( Nx ) has scattering length a / N ◮ States with small energy are characterized by a correlation structure on length scales of a ∼ N − 1 − → understand role of correlations The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 2/14

  3. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results The Gross-Pitaevskii regime Consider N bosons in a cubic box Λ described by � N � N � � N 2 V H N = − ∆ x i + N ( x i − x j ) , | Λ | = 1 i =1 i < j ◮ If V ( x ) has scattering length a , then N 2 V ( Nx ) has scattering length a / N ◮ States with small energy are characterized by a correlation structure on length scales of a ∼ N − 1 − → understand role of correlations Relevance: ◮ effective description for the strong and short range interactions among atoms in BEC experiments ◮ scaling regime leading to a rigorouns derivation of the Gross-Pitaevskii equation i ∂ t ϕ ( t ) = − ∆ ϕ ( t ) + 8 π a | ϕ ( t ) | 2 ϕ ( t ) ◮ H N equivalent to the Hamiltonian for N bosons in a box with L = N interacting through a fixed potential V , i.e. ρ = N / L 3 = N − 2 The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 2/14

  4. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Condensation in the Gross-Pitaevskii regime N bosons in Λ = [0; 1] × 3 , periodic boundary conditions � � p a p + 1 p 2 a ∗ V ( r / N ) a ∗ p + r a ∗ Λ ∗ = 2 π Z 3 � H N = q − r a p a q , 2 N p ∈ Λ ∗ p , q , r ∈ Λ ∗ [Lieb-Seiringer-Yngvason ‘00] The ground state energy of H N is given by E N = 4 π a N + o ( N ) [Lieb-Seiringer ‘02, ’06; Nam-Rougerie-Seiringer, ’16] Any Ψ N ∈ L 2 s (Λ N ) with � � Ψ N , H N Ψ N ≤ 4 π a N + o ( N ) exhibits Bose-Einstein condensation, i.e. γ (1) − N →∞ | ϕ 0 �� ϕ 0 | − − − → N where ϕ 0 ( x ) = 1 for all x ∈ Λ. The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 3/14

  5. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Condensation in the Gross-Pitaevskii regime N bosons in Λ = [0; 1] × 3 , periodic boundary conditions � � p a p + 1 p 2 a ∗ V ( r / N ) a ∗ p + r a ∗ Λ ∗ = 2 π Z 3 � H N = q − r a p a q , 2 N p ∈ Λ ∗ p , q , r ∈ Λ ∗ [Lieb-Seiringer-Yngvason ‘00] The ground state energy of H N is given by E N = 4 π a N + o ( N ) � � � = ( N − 1) � ϕ ⊗ N H N ϕ ⊗ N V (0) Note that ≫ 4 π a N 8 π a = d x f ( x ) V ( x ) 0 0 2 [Lieb-Seiringer ‘02, ’06; Nam-Rougerie-Seiringer, ’16] Any Ψ N ∈ L 2 s (Λ N ) with � � Ψ N , H N Ψ N ≤ 4 π a N + o ( N ) exhibits Bose-Einstein condensation, i.e. γ (1) − N →∞ | ϕ 0 �� ϕ 0 | − − − → N where ϕ 0 ( x ) = 1 for all x ∈ Λ. The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 3/14

  6. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  7. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M Remark (1) For small potentials κ V : 4 π a ( N − 1) + e Λ a 2 = 4 π a N ( N − 1) with κ 2 � � V 2 ( p 1 / N ) V (0) − 1 8 π a N = κ � + . . . 2 p 2 2 N 1 p 1 ∈ Λ ∗ + The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  8. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M Remark (2) Replace V by V R ( x ) = R − 2 V ( x / R ) with scattering length a R = a R : letting R → ∞ the finite size effect becomes subleading w.r.t. Bogoliubov sum. The result for E N is the analog in the GP regime of the Lee-Huang-Yang formula, valid in the thermodynamic limit: [..., Yau-Yin ’13, ... , Fournais-Solovej ’19] The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  9. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M The spectrum of H N − E N below an energy ζ consists of eigenvalues � � | p | 4 + 16 π a | p | 2 + O ( N − 1 / 4 (1 + ζ 3 )) , n p ∈ N n p p ∈ Λ ∗ + The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  10. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M The spectrum of H N − E N below an energy ζ consists of eigenvalues � � | p | 4 + 16 π a | p | 2 + O ( N − 1 / 4 (1 + ζ 3 )) , n p ∈ N n p p ∈ Λ ∗ + Remark (3) Linear dispersion relation of low energy excitations of the Bose gas Previous results in the mean field scaling [Seiringer ’11, Grech-Seiringer ’13, Lewin-Nam-Serfaty-Solovej ’14, Derezinski-Napiorkovski ’14, Pizzo ’16] and for singular interactions [Boccato-Brennecke-C. -Schlein ’17] The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  11. Introduction and results The Gross-Pitaevskii regime Strategy of the proof Results Bogoliubov theory in the Gross-Pitaevskii regime [Boccato-Brennecke-C.-Schlein ‘19] The ground state energy of H N is � � � � | p | 4 + 16 π a p 2 − (8 π a ) 2 E N = 4 π a ( N − 1) + e Λ a 2 − 1 + O ( N − 1 p 2 + 8 π a − 4 ) 2 p 2 2 p ∈ Λ ∗ + + = 2 π Z 3 \ { 0 } and where Λ ∗ � cos( | p | ) e Λ = 2 − lim p 2 M →∞ p ∈ Z 3 \{ 0 } : | p 1 | , | p 2 | , | p 3 |≤ M The spectrum of H N − E N below an energy ζ consists of eigenvalues � � | p | 4 + 16 π a | p | 2 + O ( N − 1 / 4 (1 + ζ 3 )) , n p ∈ N n p p ∈ Λ ∗ + L 2 s (Λ N ) Remark (4) Condensate depletion bound: for any ψ N ∈ s.t � � ψ N , H N ψ N ≤ 4 π a N + ζ we have � � ϕ 0 , γ (1) N (1 − N ϕ 0 ) ≤ C ( ζ + 1) i.e. condensation holds with optimal rate. The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 4/14

  12. Introduction and results Excitation Hamiltonian Strategy of the proof Correlation structure Removing particles in the Bose-Einstein condensate For ψ N ∈ L 2 s (Λ N ) and ϕ 0 ∈ L 2 (Λ) [Lewin-Nam-Serfaty-Solovej ‘12] ψ N = α 0 ϕ ⊗ N + α 1 ⊗ s ϕ ⊗ N − 1 + . . . + α j ⊗ s ϕ ⊗ N − j + . . . + α N , 0 0 0 where α j ∈ L 2 (Λ) ⊗ s j and α j ⊥ ϕ 0 ; ϕ 0 ( x ) = 1 for all x ∈ Λ. The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime S. Cenatiempo Quantissima III, Venice 5/14

Recommend


More recommend