disorder physics disorder physics with bose with bose
play

Disorder physics Disorder physics with Bose with Bose-Einstein - PowerPoint PPT Presentation

Disorder physics Disorder physics with Bose with Bose-Einstein condensates Einstein condensates Giovanni Modugno LENS and Dipartimento di Fisica, Universit di Firenze New quantum states of matter in and out of equilibrium GGI , May 2012


  1. Disorder physics Disorder physics with Bose with Bose-Einstein condensates Einstein condensates Giovanni Modugno LENS and Dipartimento di Fisica, Università di Firenze New quantum states of matter in and out of equilibrium GGI , May 2012

  2. Disorder and quantum gases Disorder is everywhere, but it is hardly controllable. Photonic media Biological systems Superconductors Graphene Ultracold quantum gases can help answering to open questions.

  3. Current experimental studies Anderson localization in 1D-3D (Palaiseau, Florence, Urbana) Transport in disordered potentials (Rice, Florence) Aspect, Inguscio, Phys. Today 62, 30 (2009); Sanchez-Palencia, Lewenstein, Nat. Phys. 6, 87 (2010) Modugno, Rep. Progr. Phys. 73, 102401 (2010)

  4. Current experimental studies BKT physics and disorder in 2D (Palaiseau, NIST-Maryland) Strongly correlated lattice phases (Firenze, Urbana, Stony Brook)

  5. Current studies in Florence Bosons in 1D lattices with tunable disorder and interactions (and noise ). Quantum phases Transport

  6. The phase diagram of disordered lattice bosons Anderson localization Bose glass Disorder Mott insulator Superfluid Interaction

  7. The phase diagram of disordered lattice bosons Rapsch, Schollwoeck, Zwerger EPL 46 559 (1999) Theory : Giamarchi and Schultz , PRB 37 325 (1988) Fisher et al PRB 40, 546 (1989). Experiment : Fallani et al., PRL 98, 130404 (2007); Pasienski et al., Nat. Phys. 6, 677 (2010).

  8. A quasi-periodic lattice 4 J ~2 ∆ β d / Harper or Aubry-Andrè model: k ∑ ∑ ˆ ˆ ˆ 2 β = + = − + ∆ πβ ˆ H J b b cos( 2 i ) n i j i k 1 i , j i Metal-insulator transition at ∆ =2 J S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980); Fallani et al., PRL 98, 130404 (2007); M. Modugno, New J. Phys. 11, 033023 (2009)

  9. A quasi-periodic lattice Rapidly oscillating correlation of the eigen-energies: g E (x) (arb. units) short localization length ( ) ξ ≈ ∆ d / log / 2 J β β − − d d /( /( 1 1 ) ) -20 -10 0 10 20 4 Position (lattice sites) Energy (units of J) 2 0 … and energy gaps -2 ≈ ∆ 0 . 15 -4 0 100 200 300 400 500 Eigenstate #

  10. Tunable interactions Quasi-periodic Bose-Hubbard model: ∑ ∑ ∑ ˆ ˆ ˆ + = − + ∆ πβ + − ˆ ˆ ˆ H J b b cos( 2 i ) n U ( a ) n ( n 1 ) i j i i i i , j i i Potassium-39 2 π � 2 ∫ 4 3 = ϕ | ( ) | U a x d x m G. Roati, et al. Phys. Rev. Lett. 99, 010403 (2007).

  11. Weak interaction regime Optical traps BEC Quasiperiodic lattice Feshbach and gravity compensation coils Weak radial trapping ( ν r =50Hz): a 3D system with 1D disorder

  12. Strong interaction regime Lattices BEC Quasiperiodic lattice Feshbach and gravity compensation coils Strong 2D lattices ( ν r =50 kHz): many quasi-1D systems with 1D disorder

  13. Momentum distribution Disorder Interaction G. Roati et al., Nature 453, 895 (2008); B. Deissler et al, Nat. Phys. 6, 354 (2010).

  14. Weak interactions: momentum distribution Disorder Interaction G. Roati et al., Nature 453, 895 (2008); B. Deissler et al, Nat. Phys. 6, 354 (2010).

  15. Phase diagram from momentum distribution n mean ~ 3

  16. Phase diagram from momentum distribution Bose Glass Bose Glass Mott Insulator Mott Insulator + Bose Glass Superfluid ∆ =2J ∆ ∆ ∆ Mott insulator MI+SF Superfluid D‘Errico et al, in preparation.

  17. Weak interaction cartoon Anderson ground-state Bose Glass (Anderson Glass) Bose Glass (Fragmented BEC) U ∫ 2 2 2 ≈ ϕ ϕ > dx 1 i H f g ( E ) Fermi golden rule 1 2 int δ E Aleiner, Altshuler, Shlyapnikov, Nat. Phys. 6, 900 (2010).

  18. Phase diagram from momentum distribution Bose Glass Bose Glass Mott Insulator Mott Insulator + Bose Glass Superfluid ∆ =2J ∆ ∆ ∆ MI+SF D‘Errico et al, in preparation. Theory by T. Giamarchi, M. Modugno.

  19. Correlation function = ∫ + ′ ′ 2 Ψ Ψ + = Ψ g ( x ) d x ( x ) ( x x ) F | ( k ) | B. Deissler et al. New J. Phys. 13, 023020 (2011)

  20. Global and local lengths Local Global 1.5 Correlation length 4 (lattice sites) (lattice sites) Local length 1.0 ξ 2 0.5 2.5 2.5 exponent exponent 1.0 2.0 1.5 0.5 1.0 0.1 1 0.1 1 E int /J U/J B. Deissler et al. New J. Phys. 13, 023020 (2011)

  21. Phase diagram from momentum distribution Bose Glass Anderson Glass Bose Glass Mott Insulator Mott Insulator + Bose Glass Superfluid ∆ =2J ∆ ∆ ∆ MI+SF D‘Errico et al, in preparation. Theory by T. Giamarchi, M. Modugno.

  22. Strong interaction cartoon BEC 4 J Bose glass 4 J Bose glass 4 J

  23. Phase diagram from momentum distribution Bose Glass Anderson Glass Bose Glass Mott Insulator Mott Insulator + Bose Glass Superfluid ∆ =2J ∆ ∆ ∆ MI+SF D‘Errico et al, in preparation. Theory by T. Giamarchi, M. Modugno.

  24. Strong interaction cartoon Bose glass 4 J Bose glass 4 J Strongly interacting Bose glass: insulating but gapless Diagnostics: � momentum distribution/correlation function � impulsive transport � excitation spectrum

  25. Impulsive transport 0.5ms kick free expansion prepare in equilibrium 10 10 0 0 ick ( µ m) ick ( µ m) -10 -10 Position after kick Position after kick -20 -20 -30 -30 -40 -40 ∆ /J =0 ∆ /J =0 ∆ /J =15 -50 -50 -60 -60 0.1 0.1 1 1 10 10 U/J U/J A. Polkovnikov et al. Phys. Rev. A 71, 063613 (2005); applied on Bose gases by DeMarco, Naegerl, Schneble

  26. Excitation spectrum main lattice modulation free expansion prepare in equilibrium (10%, 500ms) 120 MI SF . units) 100 Momentm width (arb. u 80 60 U ~ 4.2 kHz 40 0 1 2 3 4 5 6 Modulation frequency (kHz)

  27. Outlook DMRG data, Roux et al., PRA 78 , 023628 (2008) Comparison with theory, several issues: finite temperature, trap, averaging

  28. Anomalous transport in disorder An open problem since decades, little data with nonlinearities: J-P. Bouchaud and A .Georges, Phys. Rep. 195, 127 (1990) D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993) S. Flach, et al, Phys. Rev. Lett. 102, 024101 (2009) Klages, Radons, Sokolv, Anomalous transport (Wiley, 2010)

  29. Expansion measurements Disorder lattice direction time Interaction

  30. Interaction-assisted transport 50 40 increasing interact 2 σ ≠ ( t ) Dt 30 h ( µ m) action strength width 20 0.1 1.0 10.0 time (s) Lucioni et al. Phys. Rev. Lett. 106, 230403 (2011)

  31. Diffusion as hopping between localized states Γ σ 2 ∂ σ 2 = ≈ ξ Γ D Instantaneous diffusion ∂ t ∂ t 2 i H f 1 2 with density-dependent rate σ ∝ int t Γ ≈ ∝ 2 δ σ E Several experts in theory: Shepeliansky, Fishman, Flach, Pikovsky, M.Modugno … Intuitive description of the coupling: Aleiner, Altshuler, Shlyapnikov, Nat. Phys. 6, 900 (2010).

  32. Subdiffusion exponent experiment numerical simulations (DNLSE) Various regimes of sub-diffusion, depending on the interaction energy: very weak interaction, self-trapping.

  33. Spatial profiles space-dependent diffusion constant 1.0 1.0 0.8 0.8 ts) density (arb. units) ts) density (arb. units) Nonlinear diffusion equation 0.6 0.6   ∂ ∂ ∂ n n a   = D n 1 / a  −  2 x  0  ∂ ∂ ∂ 0.4 0.4 t x x   ≈ n ( x ) 1   2  σ  B. Tuck, Jour. Phys. D 9, 1559 (1976) 0.2 0.2 0 0 50 50 100 100 150 150 position ( µ m) position ( µ m)

  34. Noise-assisted transport = ∆ πβ + ω V cos( 2 x ) ( 1 A cos( t )) dis i Power Frequencies are picked randomly from a given interval, with time step T d 0 100 200 Frequency (Hz) Non stationary situation: no fluctuation-dissipation relation holds

  35. Noise-assisted transport 50 increasing noise amp 40 2 σ t = ( ) Dt width ( µ m) 30 mplitude 20 1 10 time (s) Also observed in atomic ionization (Walther), kicked rotor (Raizen) and photonic lattices (Segev&Fishman) M. Arndt et al, Phys. Rev. Lett. 67, 2435 (1991); D. A. Steck, et al, Phys. Rev. E 62, 3461 (2000).

  36. Diffusion as hopping between localized states Γ 2 ∂ σ 2 = ≈ ξ Γ D ∂ t σ Noise: Interaction: 2 2 2 2 i i V V ' ' ( ( t t ) ) f f i i H H f f 1 1 int Γ ≈ = Γ ≈ ∝ const 2 δ δ σ E E 2 2 σ = σ ∝ Dt t Normal diffusion Sub-diffusion Theory: Ovchinnikov, Ott, Shepeliansky, Bouchaud&Georges, … and many others.

  37. An extended perturbative model C. D’Errico et al., arXiv:1204.1313 E. Ott, T. M. Antonsen and J. D. Hanson, Phys. Rev. Lett. 53, 2187 (1984); J.P. Bouchaud, D. Toutati and D. Sornette, Phys. Rev. Lett. 68, 1787 (1992).

  38. Noise and interaction 60 60 2 ∂ σ − α 1 1 / = + σ D D 50 50 noise int ∂ t noise noise + interaction 40 40 σ ( µ m) σ ( µ m) ) m) 30 30 interaction 20 20 1 10 1 10 time (s) time (s)

  39. Anomalies: self-trapping and super-diffusion initial int. energy bandwidth initial kin.+ pot. energy noise + interaction superdiffusion! superdiffusion! noise interaction

Recommend


More recommend