mellin vu du ciel mellin seen from the sky
play

Mellin vu du ciel Mellin, seen from the sky Philippe Flajolet - PowerPoint PPT Presentation

Mellin vu du ciel Mellin, seen from the sky Philippe Flajolet INRIA Rocquencourt March 10, 2008 1 Hjalmar MELLIN 1854--1933 2 I. INTRODUCTION 3 4 WHY? 5 6 . 7 II. BASICS 8 9 10 11 12 - - 13 III. HARMONIC SUMS Asymptotics 14


  1. Mellin vu du ciel Mellin, seen from the sky Philippe Flajolet INRIA Rocquencourt March 10, 2008 1

  2. Hjalmar MELLIN 1854--1933 2

  3. I. INTRODUCTION 3

  4. 4

  5. WHY? 5

  6. 6

  7. . 7

  8. II. BASICS 8

  9. 9

  10. 10

  11. 11

  12. 12

  13. - - 13

  14. III. HARMONIC SUMS Asymptotics 14

  15. <0,+oo> <1,+oo> 15

  16. <-1,0> 16

  17. <-2,-1> 17

  18. - 18

  19. Digital trees (tries) Digital trees aka “tries” • Set up recurrence and generating function • Solve and get a sum • Approximate (equiv. Poisson approx.) • Analyse harmonic sum 19

  20. 20

  21. 21

  22. 22

  23. IV. SOME GOODIES A near(?) identity Möbius 23

  24. A (near) identity ??? Cf. Brigitte Vallée: binary Euclidean GCD 24

  25. A (near) identity ??? 25

  26. 26

  27. 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, . . . 27

  28. 28

  29. � eorem : The sum tends to INFINITY like 29

  30. dist=10^(-5) 30

  31. [Clement+Flajolet-Vallee, 2000-2001] 31

  32. V. Advanced techniques Perron’s formulae Approximating Dirichlet series Poisson + Mellin = Newton + Nörlund (Rice) 32

  33. 33

  34. 34

  35. 35

  36. VI. More goodies Magic Duality and the Golden T riangle 36

  37. 37

  38. 38

Recommend


More recommend