Mellin vu du ciel Mellin, seen from the sky Philippe Flajolet INRIA Rocquencourt March 10, 2008 1
Hjalmar MELLIN 1854--1933 2
I. INTRODUCTION 3
4
WHY? 5
6
. 7
II. BASICS 8
9
10
11
12
- - 13
III. HARMONIC SUMS Asymptotics 14
<0,+oo> <1,+oo> 15
<-1,0> 16
<-2,-1> 17
- 18
Digital trees (tries) Digital trees aka “tries” • Set up recurrence and generating function • Solve and get a sum • Approximate (equiv. Poisson approx.) • Analyse harmonic sum 19
20
21
22
IV. SOME GOODIES A near(?) identity Möbius 23
A (near) identity ??? Cf. Brigitte Vallée: binary Euclidean GCD 24
A (near) identity ??? 25
26
1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, . . . 27
28
� eorem : The sum tends to INFINITY like 29
dist=10^(-5) 30
[Clement+Flajolet-Vallee, 2000-2001] 31
V. Advanced techniques Perron’s formulae Approximating Dirichlet series Poisson + Mellin = Newton + Nörlund (Rice) 32
33
34
35
VI. More goodies Magic Duality and the Golden T riangle 36
37
38
Recommend
More recommend