the disastrous situation
play

The Disastrous Situation Experiments over the last year have - PowerPoint PPT Presentation

The Disastrous Situation Experiments over the last year have verified our standard model, and confirmed the earlier indirect indications of no new physics to better than 5 sigma The Disastrous Situation just terrible! The String


  1. The Disastrous Situation… Experiments over the last year have verified our standard model, and confirmed the earlier indirect indications of no new physics to better than 5 sigma

  2. The Disastrous Situation… just terrible…!

  3. The String Soundscape …or, what gravity wave detectors can tell us about BSM physics John March-Russell Oxford University Isabel Garcia Garcia, Sven Krippendorf, JMR — arXiv:1607.06813

  4. Gravitational Waves • GW have been directly observed by LIGO, and many new detectors will be built • The astrophysical potential 
 Black�Holes Neutron�stars of GW detectors has been 
 pulsars extensively studied 
 supernovae e.g. see Lasky et al. arXiv:1511.05994 • Can we use GW experiments to learn about BSM?

  5. GW detectors for BSM There are a few examples: • Inflation • Strong 1st order EW (& QCD) phase perfect�for�eLISA� transitions 
 (if�they�existed!) Review: Caprini et al. arXiv:1512.06239 • Probing the existence of a QCD axion 
 due to BH super-radiance with�aLIGO Arvanitaki et al. arXiv: 1411.2263 & 1604.03958

  6. GW detectors for BSM There are a few examples: • Inflation • Strong 1st order EW (& QCD) phase perfect�for�eLISA� transitions 
 (if�they�existed!) Review: Caprini et al. arXiv:1512.06239 • Probing the existence of a QCD axion 
 due to BH super-radiance with�aLIGO +�GW�signals�from�vacuum�decay�in� Arvanitaki et al. arXiv: String�Theory�motivated�scenarios 1411.2263 & 1604.03958

  7. Since here in Trieste the seafood is so good I'm sure that you'll vividly be able to picture the type-IIB string flux compactification landscape

  8. the string polyfaucibus D-branes for moduli stabilisation warped unwarped KS throat H 3 D3 D3 Standard Model F 3

  9. String Flux Compactifications A typical stringy set-up: a�lot�of�highly�warped� (the�6�compactified� regions:�throats� dimensions) (think�RS!) SM�??? many�hidden� sectors!

  10. String Flux Compactifications Throats are due to back-reaction from fluxes (need many pairs of integer fluxes K, M for the landscape) �warp�factor�at�throat� tip

  11. String Flux Compactifications a�lot�of�these�throats�have� anti-D3�branes�(it�is�a�severe� restriction�otherwise)

  12. String Flux Compactifications these�p�anti-D3's�lead�to�either�a� classically�unstable�configuration� or�a�metastable�one�

  13. String Flux Compactifications A typical throat features a metastable, SUSY-breaking, false vacuum, as well as a true (locally) SUSY-preserving one Kachru, Pearson, Verlinde: hep-th/0112197 physics�described�by�effective� angular�scalar�field V eff ( ψ ) false� vacuum true�vacuum ρ vac ψ ψ fv π

  14. String Flux Compactifications leading�effective� Lagrangian V eff ( ψ ) false� vacuum true�vacuum ρ vac ψ ψ fv π

  15. String Flux Compactifications non-standard�DBI-like�kinetic�terms�(makes�a�difference� to�critical�bubble�profile,�and�later�evolution) (here�I've�set�M str =1�and�am�working�in�red-shifted�units�so�tip� warp�factor�w IR �is�hidden)

  16. String Flux Compactifications as�ratio�p/M=r�reaches�a�critical�value �barrier�disappears,�so�define

  17. String Flux Compactifications as����������false�vacuum�decay�becomes�fast δ → 0 V eff ( ψ ) GW�from� false� vacuum�decay vacuum true�vacuum ρ vac ψ ψ fv π

  18. String Flux Compactifications For this talk some simplifying assumptions: • After inflation , throat in its metastable vacuum • Visible sector reheated at but T rh & 4 MeV hidden throat sector left at 
 T th ≈ 0 so�decay�occurs�via�quantum�tunnelling • Universe radiation dominated throughout (may�be�relaxed�to�include�a�phase�of�matter�domination) ρ vac ρ total ( T ) = ρ rad ( T ) + ρ vac with α ( T ) ≡ ρ rad ( T ) ≤ 1

  19. Vacuum decay Bubbles�of�the�true�vacuum�are� nucleated�in�the�early�Universe Bubbles�form expand collide! … … The�Universe� is�in�a� new�phase They�quickly�start� Bubbles�collide,�emitting� expanding�at�the� gravity�waves�(and�maybe� speed�of�light forming�some�pBHs�too…)

  20. Vacuum decay T vis Nucleation probability increases as T vis falls false� decay�rate�per�unit� Γ vacuum! volume�(T�independent) ∼ H ( T ) 4 decreases�as�the 
 T n temperature�drops true� vacuum! Γ when the transition starts H ( T n ) 4 ≈ 1 T ∼ 1 MeV

  21. Vacuum decay Nucleation probability given by Coleman's bounce solution We find for our system always a thick-walled bounce

  22. Vacuum decay Nucleation probability given by Coleman's bounce solution We find for our system always a thick-walled bounce

  23. Gravity Wave Spectrum Putting everything together we find a stochastic gravity wave spectrum with approximate peak frequency visible�temperature� at�bubble�collision duration�of�transition� in�Hubble�times

  24. Gravity Wave Spectrum Putting everything together we find a stochastic gravity wave spectrum with approximate peak frequency visible�temperature� at�bubble�collision duration�of�transition� in�Hubble�times nucleation�temperature�T n �is�exponentially�sensitive�to� underlying�throat�parameters�so�f 0� scans

  25. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR (here�have�fixed�M=10 2� and�g s =0.03)

  26. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR warp�factor�at�the� tip�of�the�throat

  27. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 decreasing δ 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR

  28. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 volume�of�compactification� 10 10 8 V = 10 10 increasing� V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR

  29. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR The�frequency�can�span�the�entire�range�being/to-be�probed� by�gravity-wave�detectors

  30. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 10 - 11 10 - 4 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR requires�that�at�least�one�of�the�many�throats�in�a�typical� flux�compactification�has����in�suitable�range δ

  31. GW peak frequency 10 7 10 14 d= 10 - 3 10 4 10 11 V = 10 2 10 10 8 V = 10 10 V = 10 18 10 - 2 10 5 f 0 T c Hz GeV 10 - 5 10 2 10 - 8 10 - 1 d= 10 - 2 not�guaranteed�of�course� 10 - 11 10 - 4 but�not�unreasonable�either� 10 - 15 10 - 12 10 - 9 10 - 6 10 - 3 w IR requires�that�at�least�one�of�the�many�throats�in�a�typical� flux�compactification�has����in�suitable�range δ

  32. GW signal strength Signal�strength�is�large�due�to: •long�duration�of�transition�(nucleation�rate�does�not� increase�with�falling�T�unlike�thermal�case)� •ultra-relativistic�expansion�of�bubbles�(no�thermal� plasma�to�impede�expansion)��

  33. GW signal strength 10 - 3 EPTA aLIGO SKA 10 - 6 false�vacuum�energy� eLISA a c = 10 - 1 decreasing� 10 - 9 Ω GW h 2 ρ vac a c = 10 - 2 LISA α c ≡ ρ rad ( T c ) a c = 10 - 3 10 - 12 BBO 10 - 15 10 - 7 10 - 10 10 - 4 10 - 1 10 2 10 5 f 0 / Hz

  34. GW signal strength 10 - 3 EPTA aLIGO SKA NOT�the�actual�high- 10 - 6 eLISA frequency�behaviour�of� a c = 10 - 1 spectrum�-�just�the� 10 - 9 Ω GW h 2 usual�one�for�guidance� a c = 10 - 2 LISA a c = 10 - 3 10 - 12 BBO 10 - 15 10 - 7 10 - 10 10 - 4 10 - 1 10 2 10 5 f 0 / Hz

  35. GW signal strength 10 - 3 Different�because� EPTA aLIGO SKA • �����has�unusual�T-dep� Γ /H 4 10 - 6 •Bubbles�are�thick-wall� eLISA a c = 10 - 1 •DBI�kinetic-term�leads� to�new�features� 10 - 9 Ω GW h 2 a c = 10 - 2 LISA (work�in�progress) a c = 10 - 3 10 - 12 BBO 10 - 15 10 - 7 10 - 10 10 - 4 10 - 1 10 2 10 5 f 0 / Hz

  36. GW signal strength 10 - 3 EPTA aLIGO SKA 10 - 6 eLISA a c = 10 - 1 high-frequency� 10 - 9 Ω GW h 2 a c = 10 - 2 LISA part�of�spectrum� a c = 10 - 3 sensitive�to� 10 - 12 underlying� BBO (string)�model! 10 - 15 10 - 7 10 - 10 10 - 4 10 - 1 10 2 10 5 f 0 / Hz

Recommend


More recommend