the cosmological evolution of blazars and the cosmic
play

The cosmological evolution of blazars and the cosmic gamma- ray - PowerPoint PPT Presentation

The cosmological evolution of blazars and the cosmic gamma- ray background in the Fermi era Yoshiyuki INOUE (Kyoto, JSPS fellow DC1) Collabolators Tomonori Totani, Susumu Inoue (Kyoto), Masakazu. A. R. Kobayashi (NAO), Jun Kataoka (Waseda),


  1. The cosmological evolution of blazars and the cosmic gamma- ray background in the Fermi era Yoshiyuki INOUE (Kyoto, JSPS fellow DC1) Collabolators : Tomonori Totani, Susumu Inoue (Kyoto), Masakazu. A. R. Kobayashi (NAO), Jun Kataoka (Waseda), Rie Sato (JAXA) Fermi Symposium 1

  2. What’s the origin of the cosmic gamma-ray background? 1. MeV Background AGNs (Rogers & Field ’91; Field & Rogers ’93; E^2 dJ/dE (keV/cm^2/s/sr) Stecker, Salamon, & Done ’01; YI, Totani, & Ueda’08) Supernovae (Clayton & Ward ‘75; Zdziarski ‘96; Watanabe+‘99) MeV Dark Matter annihilation (Ahn & Komatsu ’06, Rasera+‘06; Lawson & Zhitnitsky ‘07 ) MeV Blazars (Ajello+’09) AGNs 2. GeV Background Blazars (Stecker & Salamon ’96; Chiang & Mukherjee ’98; Mücke & Pohl 00; Narumoto & Totani ’06; Dermer ’07; YI & Totani ’09) keV MeV GeV Galaxy Cluster Merger (Loeb & Waxman ‘00; Totani & Kitayama ’00) GeV Dark Matter annihilation (e.g. Oda et al. ’05) Energy (keV) Sreekumar et al. 1998 2

  3. What is BLAZAR? SED Sequence 49 Blazar 48 47 Log 10 ( ν L ν [erg/s]) Log 10 � L � (erg s -1 ) 46 45 44 Inverse 43 Synchrotron Compton GeV 42 41 -5 0 5 10 Log 10 (Energy [eV]) Log 10 E � (eV) (Fossati+’97,’98; Kubo+’98; Donato http://www.nasa.gov/ +’01, but see also Padovani+’07) 3

  4. Blazar Gamma-ray Luminosity Function (YI & Totani ’09) Basic assumptions for blazar GLF construction • Blazar SED sequence. • AGN X-ray Luminosity Function (Ueda+’03:hereafter U03) . Assuming “L jet, bol ∝ L disk, X “. Constraining GLFs from EGRET data. Redshift Distribution Luminosity Distribution 1.8 0.8 1.6 0.7 U03(q) U03(q) 1.4 0.6 U03(q, γ 1 ) U03(q, γ 1 ) dN/d(log 10 L γ ) 1.2 dN/log(L γ ) dN/log(z) dN/d(log 10 z) H05(q) H05(q) 0.5 H05(q, γ 1 ) 1 H05(q, γ 1 ) 0.4 EGRET blazars EGRET blazars 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 0 43 44 45 46 47 48 49 50 0.01 0.1 1 log(L γ [erg/s]) Redshift z 4 log 10 (L γ [erg s -1 ]) Redshift z

  5. Cosmic X-ray and Gamma-ray Background before the Fermi era 10 -1 Blazar: U03 (q, γ 1 ) Non-blazar ( Γ =3.5): ITU08 E 2 dN/dE (MeV/cm 2 /s/sr) E 2 dN/dE (MeV 2 cm -2 s -1 MeV -1 sr -1 ) Non-blazar ( Γ =3.8): ITU08 Blazar + Non-blazar ( Γ =3.5) Blazar + Non-blazar ( Γ =3.8) HEAO-1 EGRET (S98) 10 -2 EGRET (S04a) Swift/BAT EGRET (S98+S08) SMM COMPTEL non-blazar AGNs 10 -3 (YI+08) Blazars ( YI & TT 09) X-ray MeV GeV 10 -4 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Energy (MeV) YI & TT 09 Photon Energy (MeV) Above GeV, our model does not reproduce arXiv:0810.3580 observational data. 5

  6. Cosmic X-ray and Gamma-ray Background in the Fermi era 10 -1 Blazar: U03 (q, � 1 ) Non-blazar ( � =3.5): ITU08 E 2 dN/dE (MeV 2 cm -2 s -1 MeV -1 sr -1 ) E 2 dN/dE (MeV/cm 2 /s/sr) Non-blazar ( � =3.8): ITU08 Blazar + Non-blazar ( � =3.5) Blazar + Non-blazar ( � =3.8) 10 -2 EGRET (S98) EGRET (S04a) EGRET (S98+S08) Fermi non-blazar Fermi Data from AGNs TeV conf. on July 10 -3 (YI+08) Blazars ( YI&TT09) X-ray MeV GeV 10 -4 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Energy (MeV) Photon Energy (MeV) YI & TT 09 Our prediction matched very well arXiv:0810.3580 with the Fermi data. 6

  7. Non-blazar AGNs vs. Blazars <~10 MeV: • smooth connection to CXB • likely to be non-blazar E 2 dN/dE (MeV/cm 2 /s/sr) AGNs Blazars >~10 MeV: • distinct SED from CXB Non-blazar • likely to be blazars AGNs • MeV-blazar contribution at <~10 MeV? (Ajello+09) • fine-tuning required for SED • distinct blazar population required between MeV and GeV. Ackermann+’09 at TeV. conf. Energy (MeV)

  8. Expected Number of Fermi AGNs • One-year survey 9 10 8 • ~800 blazars 10 Non-blazar 7 Fermi 10 • 1~10 non-blazar AGNs Fermi AGN N(>Flux) [(4 π sr) -1 ] N (>Flux) [(4 π sr) -1 ] 6 10 • Five-year survey EGRET 5 10 Blazar • ~1200 blazars EGRET 4 10 • 4~50 non-blazar AGNs 3 10 Blazar: U03(q, γ 1 ) 2 • Nonthermal gamma-ray 10 Non-blazar ( Γ =3.5) flux from NGC 4151, the 1 Non-blazar ( Γ =3.8) 10 Blazar + Non-blazar ( Γ =3.5) brightest Seyfert AGN 0 10 Blazar + Non-blazar ( Γ =3.8) • Flux(>100 MeV): ~1e-8 γ /cm/s -1 10 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 10 10 10 10 10 10 10 10 10 10 10 • Photon Index: ~3.5 -2 s -1 ] Flux(>100MeV) [photons cm -2 s -1 ] Flux (>100MeV) [photons cm 8

  9. Will Fermi resolve the cosmic gamma-ray background? FdN/d(log 10 F) [photons cm -2 s -1 sr -1 ] 10 -5 • Five year survey will Non-blazar Fermi F γ dN/d(log 10 F γ ) [photons cm -2 s -1 sr -1 ] resolve AGN 10 -6 • ~99% of the 10 -7 background flux Fermi from blazars (>100 EGRET EGRET 10 -8 MeV). Blazar • ~0.01% of the 10 -9 background flux Blazar: U03 (q, γ 1 ) Non-blazar ( Γ =3.5) 10 -10 from non-blazar Non-blazar ( Γ =3.8) Blazar + Non-blazar ( Γ =3.5) AGNs (>100 MeV). Blazar + Non-blazar ( Γ =3.8) 10 -11 10 -15 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 Flux (>100MeV) [photons cm -2 s -1 ] Flux(>100MeV) [photons cm -2 s -1 ] 9

  10. Fermi blazar @ z~7 1000 ~5-years survey F lim (>100MeV)=1 × 10 -9 photons/cm 2 /s • Predictions for z~7 U03( q ) U03( q , � 1 ) blazar detectability 100 U03( q , � 1 ): p 2 =3.5 • based on IT09 YI&TT09 N(>z) YI&TT09 +SDSS • improved at 10 z~7 high-z based on SDSS quasar LF 1 upto z~6. 0.1 0 2 4 6 8 10 12 14 Redshift z z ~1 blazar @ z~7 with ~5-year Fermi survey (YI+in prep.). 10

  11. Probing high-z universe through GeV gamma-ray attenuation • γ (>GeV) + γ UV → e + +e - . 100 z=0.1 z=0.3 z=1.0 z=3.0 GeV flux attenuated z=0.1 z=0.3 z=1.0 z=3.0 by high-z UV 10 background (Oh ’01, 1 1 Gilmore+09, S.Inoue+09) . Optical Depth • information of early 0.1 Optical Depth � 100 star/galaxy formation z=5.0 z=6.0 z=7.0 z=5.0 z=6.0 z=7.0 Semi-analytical may be obtained. model 10 Mitaka model Kneiske+04 Kneiske+04 • Red model: consistent with S.Inoue+09 S.Inoue+09 1 z<5 data (e.g. galaxy LF) 1 • Blue model: consistent 0.1 with z>5 data (e.g. reionization data) 1 10 100 1 10 100 1 10 100 Energy (GeV) (YI+in prep.) 11

  12. Summary 1 • New blazar GLF (Y. Inoue & Totani ’09, arXiv:0810.3580) • Blazar SED sequence incorporated • Non-trivial prediction for the cosmic gamma-ray background • Our prediction matched very well with the Fermi data. • AGNs are the primary sources as the origin of cosmic X- ray/Gamma-ray background. 12

  13. Summary 2 • Fermi will find • ~800 blazars and 1~10 non-blazar AGNs in 1-year survey, • ~1200 blazars and 4~50 non-blazar AGNs in 5-year survey. • Fermi will resolve • ~99% of the gamma-ray background from blazars (>100 MeV), • ~0.01 % of the gamma-ray background from non-blazar AGNs (>100 MeV). • ~1 blazar @ z~7 may be found by Fermi. • A new key to understanding the high-z cosmic evolution. 13

Recommend


More recommend