forward modelling in cosmology
play

Forward Modelling in Cosmology Alexandre Refregier ICTP 14.5.2015 - PowerPoint PPT Presentation

Forward Modelling in Cosmology Alexandre Refregier ICTP 14.5.2015 Cosmological Probes Cosmic Microwave Background Gravitational Lensing Supernovae Galaxy Clustering Wide-Field Instruments CMB Planck, SPT, ACT, Keck Imaging VST, DES,


  1. Forward Modelling in Cosmology Alexandre Refregier ICTP 14.5.2015

  2. Cosmological Probes Cosmic Microwave Background Gravitational Lensing Supernovae Galaxy Clustering

  3. Wide-Field Instruments CMB Planck, SPT, ACT, Keck Imaging VST, DES, Pann-STARRS, LSST VIS/NIR Euclid, WFIRST, Subaru Boss, Wigglez, DESI, HETDEX Spectro LOFAR, GBT, Chimes, BINGO, GMRT, Radio BAORadio, ASKAP , MeerKAT, SKA

  4. Impact on Cosmology Amara et al. 2008 Stage IV Stage IV+Planck Stage IV Surveys will challenge all sectors of the Stage IV+Planck Stage IV cosmological model: • Dark Energy: w p and w a with an error of 2% and 13% respectively (no prior) • Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck) • Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity • Gravity: test GR by reaching a precision of 2% on the growth exponent ( d ln m / d ln a m ) → Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys

  5. Challenges Current: Radiation-Matter transition High-precision Cosmology era with CMB Next stage: Matter-Dark Energy transition High-precision Cosmology with LSS surveys, different from CMB: ‣ 3D spherical geometry ‣ Multi-probe, Multi-experiments ‣ Non-gaussian, Non-Linear ‣ Systematics limited ‣ Large Data Volumes

  6. Bayesian Parameter Estimation ‣ Bayesian inference: p( θ |y)=p(y| θ ) × p( θ )/P(y) ‣ In practice: Evaluation of p(y| θ ) is expensive, N θ is large ( ≥ 7) ‣ MCMC: produce a sample { θ i } distributed as p( θ |y) (e.g. CosmoMC Lewis & Bridle 2002, CosmoHammer, Akeret+ 2012 ) θ 2 p( θ i |D) θ 1

  7. Forward Modelling ‣ Bayesian inference relies on the computation of the likelihood function p(y| θ ) ‣ In some situations the likelihood is unavailable or intractable (eg. non-gaussian errors, non-linear measurement processes, complex data formats such as maps or catalogues) ‣ Simulation of mock data sets may however be done through forward modelling mag r50 class ellip Angular scale 90 � 18 � 1 � 0.2 � 0.1 � 0.07 � 23.5 2.3 0.11 0.23 6000 5000 22.1 1.2 0.89 0.02 4000 D � [ µ K 2 ] 3000 24.1 3.2 0.76 0.54 2000 24.2 4.3 0.45 0.65 1000 0 2 10 50 500 1000 1500 2000 2500 22.7 3.1 0.91 0.32 Multipole moment, �

  8. Approximate Bayesian Computation review: Turner & Zandt 2012, see also: Akeret et al. 2015 ‣ Consider reference data set y and simulation based model with parameters θ which can generate simulated data sets x ‣ Define: • Summary statistics S to compress information in the data • Distance measure ρ (S(x),S(y)) between data sets • Threshold ε for the distance measure ‣ Sample prior p( θ ) and accept sample θ * if ρ (S(x),S(y))< ε , where x is generated from model θ * ‣ ABC approximation to posterior: p( θ |y) ≃ p( θ | ρ (S(x),S(y))< ε ) ‣ Use Monte Carlo sampler with sequential ε to sample ABC posterior (eg. ABC Population Monte Carlo)

  9. Gaussian Toy Model Iteration: ¡0, ¡ ² : ¡0.500 Iteration: ¡2, ¡ ² : ¡0.414 Iteration: ¡4, ¡ ² : ¡0.298 Iteration: ¡6, ¡ ² : ¡0.231 Akeret et al. 2015 8 8 8 8 6 6 6 6 4 4 4 4 2 2 2 2 0 0 0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.6 0.8 1.0 1.2 1.4 Data set y: N samples drawn µ µ µ µ Iteration: ¡8, ¡ ² : ¡0.181 Iteration: ¡10, ¡ ² : ¡0.135 Iteration: ¡12, ¡ ² : ¡0.103 Iteration: ¡14, ¡ ² : ¡0.083 8 8 8 8 from gaussian distribution 6 6 6 6 4 4 4 4 with known σ and unknown 2 2 2 2 0 0 0 0 0.6 0.8 1.0 1.2 1.4 0.8 0.9 1.0 1.1 1.2 1.3 0.8 0.9 1.0 1.1 1.2 1.3 0.8 0.9 1.0 1.1 1.2 mean θ µ µ µ µ Iteration: ¡16, ¡ ² : ¡0.063 Iteration: ¡18, ¡ ² : ¡0.050 Iteration: ¡20, ¡ ² : ¡0.041 Iteration: ¡22, ¡ ² : ¡0.031 40 40 40 40 30 30 30 30 S ummary statistics : S(x)=<x> 20 20 20 20 10 10 10 10 0 0 0 0 0.8 0.9 1.0 1.1 1.2 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.96 0.98 1.00 1.02 1.04 D istance: ρ (x,y) = |<x>-<y>| µ µ µ µ Iteration: ¡24, ¡ ² : ¡0.024 Iteration: ¡26, ¡ ² : ¡0.020 Iteration: ¡28, ¡ ² : ¡0.016 Iteration: ¡30, ¡ ² : ¡0.012 40 40 40 40 30 30 30 30 20 20 20 20 10 10 10 10 0 0 0 0 0.96 0.98 1.00 1.02 1.04 0.96 0.98 1.00 1.02 1.04 0.96 0.98 1.00 1.02 1.04 0.96 0.98 1.00 1.02 1.04 µ µ µ µ Iteration: ¡32, ¡ ² : ¡0.010 Iteration: ¡34, ¡ ² : ¡0.010 50 50 ABC ¡PMC ABC ¡analytic 40 40 Bayesian 30 30 20 20 10 10 0 0 0.96 0.98 1.00 1.02 1.04 0.96 0.98 1.00 1.02 1.04 µ µ

  10. Image Modelling UFig: Ultra Fast Image Generator Bergé et al. 2013, Bruderer et al. 2015 data y : SExtractor catalogue Bertin & Arnouts 1996 model: parametrised distribution of intrinsic galaxy properties UFig

  11. ABCPMC Akeret et al. 2015 Mahalonobis distance: q ( y − µ y ) T Σ − 1 S ( y ) = y ( y − µ y ) q ( x − µ y ) T Σ − 1 S ( x ) = y ( x − µ y ) , ρ (S(x),S(y))= 1D KS distance

  12. Monte-Carlo Control Loops Refregier & Amara 2013 'Δ'Inputs' Input' Image'Simula1ons' 0' Data' (UFig)' 2' Lensing'Measurements' Other'Diagnos1cs' Lensing' Lensing' Lensing' 3.2' Other' Other' 1' Other' 3.1'

  13. UFig Ultra Fast Image Generator Bergé et al. 2013; Bruderer et al. 2015 DES SV UFig 7x10 6 ¡galaxies ¡(R<29) ¡ 3x10 4 ¡stars ¡ 2.5 ¡min ¡on ¡a ¡single ¡core

  14. HOPE Akeret et al. 2014 • Just-In-Time compiler for astrophysical computations • Makes Python as fast as compiled languages • HOPE translates a Python function into C++ at runtime • Only a @jit decorator needs to be added @hope.jit def improved(x, y) : return x**2 + y**4 • Supports numerical features commonly used in astrophysical calculations For more information see: http://hope.phys.ethz.ch

  15. MCCL: First Implementation Bruderer et al. 2015 mag 14 16 18 20 22 24 26 28 6 10 3 10 2 10 1 5 10 0 10 3 10 2 10 1 5 4 0 10 0 0 10 3 Size [pixels] 1 2 10 2 0 0 0 0 0 10 1 10000 3 10 0 10000 5000 1 0 0 10 3 10 2 1000 2000 2 0 0 5 0 10 1 0 0 2000 2 5 10 0 0 0 10 3 100 10 2 10 1 1 10 0 10 3 DES 10 2 UFig 10 1 0 10 0 6 14 16 18 20 22 24 26 28 5 mag Size [pixels] 4 3 2 1 0 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3

  16. Tolerance Analysis Bruderer et al. 2015 0 . 10 PSF - uncorr PSF - uncorr PSF - uncorr PSF - corr PSF - corr PSF - corr DES SV DES SV DES SV DES 5y DES 5y DES 5y 0 . 05 95% CL 95% CL 95% CL m 1 0 . 00 − 0 . 05 − 0 . 10 30 . 5 30 . 6 5 . 0 5 . 5 0 . 36 0 . 42 mag 0 σ N e 1 ,rms 0 . 10 PSF - uncorr PSF - uncorr PSF - uncorr PSF - corr PSF - corr PSF - corr DES SV DES SV DES SV DES 5y DES 5y DES 5y 0 . 05 95% CL 95% CL 95% CL m 1 0 . 00 − 0 . 05 − 0 . 10 0 . 40 0 . 48 0 . 24 0 . 30 0 . 135 0 . 150 e 2 ,rms σ θ

  17. UFIG/BCC Busha, Wechsler et al. 2015; Chang et al. 2015 Transfer Function Blind Cosmology Partial Ultra Fast Image Simulated Simulated Challenge (BCC) DESDM Generator (UFig) DES images DM catalogs Catalogs software ? Our Universe CTIO / DECam DES images DESDM DM catalogs software Nord et al. 2015, Nicola et al. 2015 + Integration of spectroscopy simulations

  18. Conclusions ‣ Upcoming and future LSS surveys have great promise for cosmology but will require new data analysis approaches ‣ Forward modelling is a promising approach to analyse complex data sets ‣ ABC can provide an approximation to the posterior in cases when the likelihood is not available

Recommend


More recommend