Galileo Galilei Institute Beyond the SM after LHC 8 July 2013 TeV-Scale Superpartners with an Unnatural Weak Scale Lawrence Hall University of California, Berkeley
OR
Multiverse SUSY
Outline 1. High Scale SUSY Hall, Nomura 0910.2235 2. Spread SUSY Hall, Nomura 1111.4519 3. TeV SUSY with ρ D ∼ ρ B Bousso, Hall 1304.6407
Outline 1. High Scale SUSY Hall, Nomura 0910.2235 2. Spread SUSY (multi)-TeV Hall, Nomura 1111.4519 superpartners 3. TeV SUSY with ρ D ∼ ρ B Bousso, Hall 1304.6407
Outline 1. High Scale SUSY Hall, Nomura 0910.2235 2. Spread SUSY (multi)-TeV Hall, Nomura 1111.4519 superpartners 3. TeV SUSY with ρ D ∼ ρ B Bousso, Hall 1304.6407 Agnostic All three have a fine-tuned weak scale Multiverse
Simplest Interpretation of LHC 8 125 GeV Higgs is fine tuned (to some degree) v
Simplest Interpretation of LHC 8 125 GeV Higgs is fine tuned (to some degree) v A Simple Interpretation: Λ CC : tuning and size understood in the multiverse. v :
Simplest Interpretation of LHC 8 125 GeV Higgs is fine tuned (to some degree) v A Simple Interpretation: Λ CC : tuning and size understood in the multiverse. v : Multiverse arguments for ˜ m the scale of superpartners?
Where are the Superpartners? ˜ m scalar M unif Natural Susy TeV TeV M unif ˜ m fermion Cornered after 30+ years -- of course, we need to be sure
Without Naturalness ˜ m scalar M unif ? TeV TeV M unif ˜ m fermion Where are the Superpartners?
Split SUSY Pioneered multiverse reasoning in BSM particle physics Arkani-Hamed, Dimopoulos ˜ hep-th/0405159 m scalar M unif TeV TeV M unif ˜ m fermion Gaugino/Higgsino dark matter Measurements could imply huge fine-tuning of weak scale
Anthropics for Λ CC r P No Λ CC Large Scale Structure Weinberg PRL 1987
Anthropics for Λ CC r P No Λ CC Large Scale Structure Weinberg PRL 1987 Fraction of virialized baryons 0.8 12 9 7 10 10 10 0.6 Probability density 0.4 0.2 0.0 − 124 − 123 − 122 − 121 − 120 − 119 log( ρ Λ ) Martell, Shapiro, Weinberg astro-ph/9701099
Anthropics for Λ CC r P No Λ CC Large Scale Structure Weinberg PRL 1987 Fraction of virialized baryons Causal patch measure 0.8 0.7 12 9 7 10 10 10 0.6 0.6 0.5 Probability density Probability density 0.4 0.4 0.3 0.2 0.2 0.1 0.0 0.0 − 124 − 123 − 122 − 121 − 120 − 119 − 126 − 125 − 124 − 123 − 122 − 121 − 120 − 119 log( ρ Λ ) log( ρ Λ ) Martell, Shapiro, Weinberg astro-ph/9701099 Bousso, Harnik, Kribs,Perez hep-th/0702115
Anthropics for v and Λ CC r P No Λ CC Large Scale Structure Weinberg PRL 1987 r P No v Complex Nuclei Agrawal, Barr, Donoghue, Seckel ph/9707380
Anthropics for v and Λ CC r P No Λ CC Large Scale Structure Weinberg PRL 1987 r P No v Complex Nuclei Agrawal, Barr, Donoghue, Seckel ph/9707380 ?? ˜ m
Scanning SUSY Breaking Consider a power law distribution for in multiverse ˜ m m p d ln ˜ dP ∝ ˜ m For include a factor for fine tuning of weak scale ˜ m ≥ v ⇣ v ⌘ 2 m p d ln ˜ dP ∝ ˜ m m ˜ Runaway to Natural weak scale High Scale SUSY 2 p
1. High Scale SUSY Hall, Nomura 0910.2235
Runaway to High Scale SUSY p > 2 dP d ln ˜ m Runaway to High Scale SUSY ˜ m v
Runaway to High Scale SUSY p > 2 dP d ln ˜ m Runaway to M unif High Scale SUSY ˜ m s TeV ˜ m v TeV M unif ˜ m f
Higgs Mass Prediction Hall, Nomura 0910.2235 150 m t = (173 . 1 ± 1 . 3) GeV 140 M H � GeV � α s = 0 . 1176 m = 10 14 GeV 130 ˜ 120 2 4 6 8 10 tan Β H u ↔ H d Axion m h = (128 ± 3 ± 0 . 6 ± 1 . 0) GeV Dark Matter m = 10 14 ± 2 GeV ˜ m t , α s ˜ t loop
2. Spread SUSY Hall, Nomura 1111.4519
Stabilizing SUSY Breaking at Multi-TeV p > 2 dP d ln ˜ m Runaway to High Scale SUSY ˜ ? m v
Anthropics for v, , and Λ CC ˜ m r P No Λ CC Large Scale Structure Weinberg PRL 1987 r P No v Complex Nuclei Agrawal, Barr, Donoghue, Seckel ph/9707380 r P Too much ˜ m Dark Matter Hall, Nomura 1111.4519
A Boundary from LSP Freeze-Out Assumptions: 1. The LSP is cosmologically stable 2. T R ≥ ˜ m 3. No Dilution 1 Ω h 2 / The result: h σ A v i / m 2 m 2 LSP / ˜ m < ˜ ˜ ρ D < ρ c m c
A Boundary from LSP Freeze-Out Assumptions: 1. The LSP is cosmologically stable 2. T R ≥ ˜ m 3. No Dilution 1 Ω h 2 / The result: h σ A v i / m 2 m 2 LSP / ˜ m < ˜ ˜ ρ D < ρ c m c { Disks don’t fragment Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774 Close encounters
A Boundary from LSP Freeze-Out Assumptions: 1. The LSP is cosmologically stable 2. T R ≥ ˜ m 3. No Dilution 1 Ω h 2 / The result: h σ A v i / m 2 m 2 LSP / ˜ m < ˜ ˜ ρ D < ρ c m c { Disks don’t fragment Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774 Close encounters Unnatural � α e ff ⇥ ⇤ m LSP ∼ α e ff T eq M P ≈ 1 TeV 0 . 01 Multi-TeV SUSY
Two Cases X † X m ∼ F X Scalar Masses M 2 ( Q † Q + . . . ) M ∼ m 3 / 2 ˜
Two Cases X † X m ∼ F X Scalar Masses M 2 ( Q † Q + . . . ) M ∼ m 3 / 2 ˜ ?? X M W α W α
Two Cases X † X m ∼ F X Scalar Masses M 2 ( Q † Q + . . . ) M ∼ m 3 / 2 ˜ ?? X Yes M W α W α q, ˜ ˜ g, . . . TeV Multiverse MSSM
Two Cases X † X m ∼ F X Scalar Masses M 2 ( Q † Q + . . . ) M ∼ m 3 / 2 ˜ ?? X Yes No M W α W α ˜ q, . . . 100 TeV 1-loop anomaly mediation Giudice, Luty, Murayama, Rattazzi q, ˜ ˜ ˜ g, . . . g, . . . hep-ph/9810442 TeV TeV Spread SUSY Multiverse MSSM
Spread SUSY M unif ˜ m s TeV TeV M unif ˜ m f Gaugino dark matter
Spread SUSY 125 GeV Scalar is “effortless” M unif ˜ m s TeV TeV M unif ˜ ˜ m s m f Gaugino dark matter
Spread SUSY 125 GeV Scalar is “effortless” M unif ˜ m s TeV TeV M unif ˜ ˜ m s m f Spread Hall, Nomura arXiv:1111.4519 Pure Gravity Mediation Ibe, Yanagida arXiv:1112.2462 Gaugino dark matter Arvanitaki, Craig, Dimopoulos, Mini-Split Villadoro arXiv:1210.0555 Arkani-Hamed, Gupta, Kaplan, Simply Unnatural Weiner, Zorawski arXiv:1212.6971
Susy Spectrum M P l m ˜ ∼ m 3 / 2 M Fund m 3 / 2 100 10 12 m =10 5 TeV ˜ Mass Spectrum 1000 2 g =10 TeV M ˜ M ˜ W =3 TeV m 3 / 2 [TeV] 1 5 TeV 3 TeV 100 2 TeV 1 TeV 0.5 500 GeV 1 TeV =10 4 TeV 200 GeV Hall, Nomura, Shirai 10 0.2 m =10 3 TeV m =10 2 TeV ˜ ˜ arXiv:1210.2395
Dark Matter Abundance M P l m ˜ m 3 / 2 100 ∼ 10 M Fund m 3 / 2 T R = 10 8 GeV 1000 0.1m 1mm 10m 1m 1cm 0.1mm FO m 3 / 2 [TeV] 100 FI Hall, Nomura, Shirai 0.01 arXiv:1210.2395 0.1 10 1 W h 2 Ω ˜ AMS-02(KRA) Fermi c τ ˜ g AMS-02(MIN) Fermi(3 × weaker) 1 < M ˜ g < 3 TeV
3. TeV Scale Superpartners with ρ D ∼ ρ B Bousso, Hall 1304.6407
No Catastrophic Boundary for Dark Matter dP d ln ˜ m Too much Dark Matter ˜ m v If this boundary does not exist, or is far from our universe, are we forced to High Scale SUSY?
The Dark to Baryon Ratio ζ = ρ D Why is ? ∼ 1 ρ B
The Dark to Baryon Ratio ζ = ρ D Why is ? ∼ 1 ρ B 1 A multiverse explanation: dP ∼ ζ p/ 2 1 + ζ d ln ζ dP Same Causal Patch 0 < p < 2 d ln ζ measure as for CC ζ 1
LSP Dark Matter from Freeze-Out m 2 ζ ∝ ρ D ∝ ˜ Electroweak Measure fine-tune ✓ v 2 ◆ ✓ ˜ ✓ v 2 ◆ dP m 2 ◆ m p ˜ c m p ˜ m 2 ˜ d ln ˜ m m 2 m 2 ˜ ˜ m p ˜ ˜ m ˜ v m c
LSP Dark Matter from Freeze-Out m 2 ζ ∝ ρ D ∝ ˜ Electroweak Measure fine-tune ✓ v 2 ◆ ✓ ˜ ✓ v 2 ◆ dP m 2 ◆ m p ˜ c m p ˜ m 2 ˜ d ln ˜ m m 2 m 2 ˜ ˜ m p ˜ ˜ m ˜ v m c 2 < p < 4 Little SUSY Hierarchy
LSP Dark Matter from Freeze-Out m 2 ζ ∝ ρ D ∝ ˜ Electroweak Measure fine-tune ✓ v 2 ◆ ✓ ˜ ✓ v 2 ◆ dP m 2 ◆ m p ˜ c m p ˜ m 2 ˜ d ln ˜ m m 2 m 2 ˜ ˜ m p ˜ ˜ m ˜ v m c 2 < p < 4 ρ D Bonus: ∼ 1 Little SUSY Hierarchy ρ B
4. Gravitino LSP Hall, Ruderman, Volansky 1302.2620
TeV scale superpartners in unnatural theories rest on LSP freeze-out DM (multiverse or not) What if LSP does not reach Thermal Equilibrium? F Gravitino is often the LSP m 3 / 2 ∼ M P l Large Loop-hole?
TeV scale superpartners in unnatural theories rest on LSP freeze-out DM (multiverse or not) What if LSP does not reach Thermal Equilibrium? F Gravitino is often the LSP m 3 / 2 ∼ M P l Large Loop-hole? Josh’s talk: No! Must include all production mechanisms
multi-TeV TeV m : ˜ 10 5 T R a eff = 0.03 H wino L T R m = 10 3 é = 10 3 m ˜ m . 9 TeV 10 4 ˜ overclosed FO é @ GeV D m BBN 10 3 UV é m 3 ê 2 > m 10 2 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 10 1 10 2 10 3 10 4 1 m 3 ê 2 @ GeV D
Summary: SUSY in the Multiverse
A Remarkable Situation 1973-2013: 40 years without BSM discovery 1 1998: Λ CC ∼ G N t 2 obs 2013: SM Higgs, apparently tuned
Recommend
More recommend