Takaaki Kajita Takaaki Kajita ICRR and IPMU, Univ. of Tokyo
Introduction Introduction • It is already more than 10 years since we knew neutrinos have masses. • Since then, all the tests suggested that the dominant oscillation channel observed in atmospheric and long baseline experiments is experiments is . • Small but finite neutrino masses are believed to be related to the physics at the very high energy scale and the early Universe. (J.Valle) • Present: 2 and sin 2 2 23 Precise measurements of m 23 • Near future: 13 e Measurement of 13 3 3 • Next goals N t l CP violation and mass or or or 2 2 hierarchy hierarchy. 1
Outline Outline • Introduction (Done) 2 and sin 2 2 2 and sin 2 2 23 • Measurements of m • Measurements of m 23 Atmospheric neutrino experiments LBL experiments • 13 13 status of 13 search Future possibilities with atmospheric ’s Future possibilities with atmospheric s Near future LBL 13 experiments • Beyond 13 (short) d ( h ) • Summary Many thanks to many people, especially; A.Habig, M.Messier, N.Mondal, R.Wendel, C.Ishihara, F.Dufour, K.Okumura, A.Ichikawa, J.Maricic
Measurements of Measurements of 2 and sin 2 2 23 m 23 23 23
Atmospheric neutrino experiments Atmospheric neutrino experiments There are many experiments that contributed to the atmospheric neutrino studies. Kamiokande Frejus (1000ton) (1000 ) (700 (700ton) ) IMB (3300ton) NUSEX (130ton) Soudan ‐ 2 Soudan 2 (1kton) Results from Super ‐ K R lt f S K MACRO are discussed, due to the dominant statistics. Super ‐ K Super ‐ K ‐ I+II+III: (22.5kton) 173 kton ・ yr y MINOS MINOS (5.4kton) Super ‐ K ‐ III data included to the final physics analysis for the first time.
Atmospheric neutrino data from Super Atmospheric neutrino data from Super ‐ K R Wendell July 4 R.Wendell, July 4 Super ‐ K ‐ I+II+III (2806 days (173kton ・ yr) for FC+PC, 3109 days for up ‐ ) ‐ like e ‐ like gy energ + DATA + DATA ― MC (no osc.) ― MC (best ‐ fit)
L/E distribution update with SK L/E distribution update with SK ‐ I+II+III I+II+III Preliminary Neutrino decay (4.4 ) Neutrino decoherence (5.4 )
Long baseline experiments Long baseline experiments NOvA NO A CNGS T2K (~2013 ‐ ) (running) (2009 ‐ ) Next MINOS talk… K2K K2K (running) (running) (finished)
The MINOS experiment The MINOS experiment A Habig July 2 A,Habig, July 2 735km 735km 5 4 kton MINOS far detector 5.4 kton MINOS far detector 1 kton near detector 1 kton near detector Monte Carlo Unoscillated Oscillated Oscillated NuMI beam line
MuMI MuMI beam history beam history A,Habig, July 2
MINOS result MINOS result A.Habig (MINOS collab.) July 2 g y PRL 101, 131802 (2008) 848 CC candidates 1065 ± 60(syst) no ‐ osc. prediction Decay and decoherence models are disfavored at 3.7 and 5.7 , resp. With oscillation fit Clear energy dependent deficit. Completely consistent with .
P( ) and P( ) identical? P( ) and P( ) identical? A.Habig, July 2 g, y MINOS is the first LBL experiment that can separate and anti ‐ interactions. 6.4% of CC interactions in the Far detector are anti ‐ . 82% efficiency, 97% purity 82% efficiency, 97% purity “ Best fit” region region Dedicaed ani ‐ neutrino running starting in September!
13
13 13 global fit global fit arXiv:0806.2649 arXiv:0808.2016 ◆ SNO and KamLAND slight tension. ◆ CHOOZ: dominant contribution. Still not clear…. Any further hint from newer Any further hint from newer atmospheric and LBL data ?
MINOS e appearance search MINOS appearance search M Sanchez (MINOS) Fermilab seminar Feb 2009 M.Sanchez (MINOS), Fermilab seminar Feb. 2009 A.Habig, TAUP2009 35 e candidate events are selected at the Far detector. Expected background: 27 ± 5(stat) ± 2(syst) (1.5 ) “signal “ G.L.Fogli et al, arxiv:0905.3549 Also; A. Palazzo, July 2 Interesting data! Can atmospheric neutrinos help?
zero 13 Search for non Search for non ‐ zero 13 in atmospheric neutrinos in atmospheric neutrinos Super ‐ K ‐ I+II+III data P ( ) e P( ν e → ν µ ) P( ν e → ν µ ) P( ν e → ν µ ) P( ν e → ν µ ) P( ν e → ν µ ) Δ m 2 =0.002eV 2 , sin 2 θ 23 =0.5, sin 2 θ 13 =0.05 Δ m 2 =0.002eV 2 , sin 2 θ 23 =0.5, sin 2 θ 13 =0.05 Δ m 2 =0.002eV 2 , sin 2 θ 23 =0.5, sin 2 θ 13 =0.05 Δ m 2 =0.002eV 2 , sin 2 θ 23 =0.5, sin 2 θ 13 =0.05 Δ m 2 =0.002eV 2 , sin 2 θ 23 =0.5, sin 2 θ 13 =0.05 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 0.4 0.4 0.4 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 cos -0.4 -0.4 -0.4 -0.4 -0.4 0.3 0.3 0.3 0.3 0.3 cos Θ ν cos Θ ν cos Θ ν cos Θ ν cos Θ ν -0.5 -0.5 -0.5 -0.5 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 0.2 0.2 0.2 0.2 0.2 -0.7 -0.7 -0.7 -0.7 -0.7 -0.8 -0.8 -0.8 -0.8 -0.8 0.1 0.1 0.1 0.1 0.1 1 ‐ ring -0.9 -0.9 -0.9 -0.9 -0.9 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 10 10 10 10 10 E ν (GeV) E ν (GeV) E ν (GeV) E ν (GeV) E ν (GeV) E (GeV) (Normal hierarchy and m 12 2 =0 assumed) Electron appearance in the No evidence for multi ‐ GeV upward going events. electron appearance…
Allowed 13 Allowed 13 region from SK atmospheric region from SK atmospheric CHOOZ limit Preliminary Normal 68, 90, 99%CL CHOOZ li CHOOZ limit it Inverted No evidence for non ‐ zero 13 with an analysis that assumes m 12 2 =0.
Future 13 Future 13 analysis of the atmospheric neutrino data analysis of the atmospheric neutrino data ◆ Super ‐ K ‐ I+II+III searched for finite 13 based on the 1 mass scale dominance. ◆ No evidence for finite 13 have been found. ◆ However, the solar term effects are relevant in atmospheric neutrino exp’s. , p p ◆ Furthermore, the analyses in arXiv:0806.2649 and others indicate the potential importance of the full 3 flavor analysis. Ψ ( ν e )/ Ψ 0 ( ν e ) Ψ ( ν e )/ Ψ 0 ( ν e ) Ψ ( ν e )/ Ψ 0 ( ν e ) Ψ ( ν e )/ Ψ 0 ( ν e ) Ψ ( ν e )/ Ψ 0 ( ν e ) Ψ ( ν e )/ Ψ 0 ( ν e ) sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on sin 2 θ 23 =0.5, sin 2 θ 13 =0.04, solar on 0 0 0 0 0 0 1.5 1.5 1.5 1.5 1.5 1.5 Sensitivity s 2 23 =0.4 Solar 1.4 1.4 1.4 1.4 1.4 1.4 s 2 13 =0.04 Sorry, only SK 80 years sensitivity … term = /4 cp /4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 1.3 1.3 1.3 1.3 1.3 1.3 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 sin 2 13 sin 2 13 =0.04 sin 2 13 =0.02 1.2 1.2 1.2 1.2 1.2 1.2 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 nith) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 1.1 1.1 1.1 1.1 1.1 1.1 Effect cos Θν cos Θν cos Θν cos Θν cos Θν cos Θν 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 99%CL 99%CL 90%CL 90%CL Interference Interference of 13 f cos(zen Test ( 13 ) point 1 1 1 1 1 1 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 sin 2 θ 13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 (CP) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.8 0.8 0.8 0.8 0.8 0.8 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 50 50 100 150 200 250 300 350 100 150 200 250 300 350 100 150 200 250 300 350 100 150 200 250 300 350 0 0 0 0 50 50 50 50 100 150 200 250 300 350 100 150 200 250 300 350 100 150 200 250 300 350 100 150 200 250 300 350 2 CP phase 0.6 0.6 0.6 0.6 0.6 0.6 0 CP phase CP phase CP phase CP phase CP phase CP phase CP phase CP phase -1 -1 -1 -1 -1 -1 0.5 0.5 0.5 0.5 0.5 0.5 -1 -1 -1 -1 -1 -1 10 10 10 10 10 10 1 1 1 1 1 1 10 10 10 10 10 10 In any case, interesting to see the data! E ν (GeV) E ν (GeV) E ν (GeV) E ν (GeV) E ν (GeV) E ν (GeV)
Future study of atmospheric s: INO Future study of atmospheric : INO Naba K Mondal, NuHorizons 09 D. Indumathi, NuGoa (2009) 50 kton INO detector ・ 3 modules ・ Each module = 16 × 16 × 12m 3 Location of INO Location of INO ・ 140 layers of 6cm thick iron ・ Magnetized to 1.2 Tesla Funding for the current plan period ending in March 2012 has been allocated. g p p g Expect to start the experiment with the first module by 2013.
Recommend
More recommend