suyun ham and john s popovics
play

Suyun Ham and John S. Popovics The University of Illinois at - PowerPoint PPT Presentation

Damage level inspection of Concrete tie using a Fully Contactless Ultrasonic Scans Suyun Ham and John S. Popovics The University of Illinois at Urbana-Champaign 2014 International Crosstie and Fastening system Symposium 2 Pr Presen esenta


  1. Damage level inspection of Concrete tie using a Fully Contactless Ultrasonic Scans Suyun Ham and John S. Popovics The University of Illinois at Urbana-Champaign 2014 International Crosstie and Fastening system Symposium

  2. 2 Pr Presen esenta tation tion out outli line ne (contactless = noncontact = air-coupled) 1) Motivation 2) Experimental testing set up 3) Demonstration of benefits of air-coupled tests 4) Application to concrete 5) Conclusions

  3. Motivation Motivation <J.R. Edwards> cost effective inspection: one-sided, air-coupled ultrasound techniques carried out from a moving platform < Naus et al., 2008>

  4. Objective Objective Microcracks Development and <Walker et al. 2006> verification of cost- effective , fully air- Delamination coupled ultrasonic <S. Naar> test Rail seat deterioration (RSD) <J.R. Edwards>

  5. Background ; Rail seat deterioration (RSD) Concrete crossties are important components • Distribute wheel loads (Support) • Maintain track geometry (Stability) • Electrically isolate rails (Isolation) Zeman,2010  degradation at contact interface between the concrete rail seat and the rail pad that can result in track geometry problems  Currently, freeze-thaw cracking, crushing, hydro-abrasive erosion, and hydraulic pressure cracking may contribute to RSD Zeman,2010

  6. Fu Full lly y co cont ntac actles tless s ultr ultras ason onic ic te tech chniqu nique e Contactless electrostatic Contactless MEMS Sender Receiver Possible height = 4 ~ 50mm 50mm Surface guided wave Air Concrete 0.06 0.05 Amplitude (V) 0.04 0.03 0.02 0.01 0 70 72.5 75 77.5 80 82.5 85 87.5 90 incident Angle (degree)

  7. Testing Tes ting co configur nfigurat ation ion T R T Electrostatic Transducer PZT Transducer Contact Contactless 𝟐 𝟐 1A 𝟔 A 𝟔𝟐 A R Contactless Best MEMS receiver Contactless electrostatic Sender Condenser Dynamic MEMS Accelerometer Mic Mic Contact Contactless

  8. Tes Testing ting co configur nfigurat ation ion Multi lti MEM EMS S se senso sor a r arra rray R T Consistency, cost and size effective -3 x 10 1.5 +6 mm +4 mm 1 +2 mm Contactless 0 mm -2 mm MEMS receiver 0.5 -4 mm Amplitude(V) -6 mm 0 Contactless -0.5 Reliable array electrostatic Sender system! -1 -1.5 2.2 2.4 2.6 2.8 3 3.2 3.4 Time(sec) -4 x 10

  9. Tes Testing ting co configur nfigurat ation ion R T 4 axial Scan Contactless MEMS receiver Contactless electrostatic Sender

  10. Tes Testing ting Time Time 7.5 hours vs. 1 hours !

  11. Aut Automa omatic tic sc scan anning ning sy syst stem em 4D scan It was built by own technique with out purchasing Rapid robotic system Contactless capacitance Signal transducer Micro processer process Contactless sensor bracket Adjustable height Gyro tilt sensor Contactless MEMS sensor Crosshair Laser targeting

  12. Key Key fea feature of contactles ture of contactless s sens sensing: ing: 1) ) Sign Signal al co consiste nsistenc ncy 1st Try with same Accelerometer 2nd Try with same Accelerometer 0.04 3rd Try with same Accelerometer 0.03 Accelerometer 0.02 (contact) Amplitude(V) 0.01 0 -0.01 Accelerometer 0.06 MEMS Sensor -0.02 Condensor Microphone 0.04 Dynamic Microphone -0.03 0.02 -0.04 Amplitude(V) 1.5 2 2.5 3 3.5 4 4.5 5 Time(sec) -4 x 10 0 -0.02 0.01 -0.04 0.005 Amplitude(V) -0.06 0 1 2 3 4 5 6 0 Time(sec) -4 x 10 -0.005 -0.01 MEMS 1 at same location MEMS 2 at same location 2 3 4 Time(sec) -4 x 10

  13. Key Key fea feature of contactles ture of contactless s sens sensing: ing: 2) ) Appl Applicati ication to on to rough rough surfaces surfaces 0.6 0.4 0.2 Amplitude(V) 0 Smooth Smoo th -0.2 -0.4 0 1 2 3 4 5 6 7 Time(sec) -4 x 10 0.6 Distance 0.4 0.2 Amplitude(V) Medium Me dium 0 -0.2 -0.4 0 1 2 3 4 5 6 7 Time(sec) -4 x 10 0.6 0.4 0.2 Amplitude(V) 0 Extreme Extr emely y -0.2 Rou ough gh -0.4 0 1 2 3 4 5 6 7 Time(sec) -4 3. Work to date x 10

  14. Test result  understanding of inter-relation between damage and surface wave behavior  Signal analysis procedure  Deploy developed technology and analysis procedure in a field testing prototype.

  15. Tes Testing ting co configur nfigurat ation ion Sender Receiver array Fast Scanning!! R3 : serious RSD R2 : middle level of RSD R1 : no damage

  16. Te Test 1 : st 1 : preli preliminary minary tests tests wi with th & w & withou ithout a t a pad pad -3 8 x 10 R2 middle level damage No Pad 6 4 Amplitude(V) 2 0 -2 -4 -6 -8 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Time(sec) -4 x 10 -3 8 x 10 No Pad 6 R3 serious level damage 4 Amplitude(V) 2 0 -2 -4 -6 -8 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Time(sec) -4 x 10

  17. Integrated signal energy analysis 𝜖 2 𝜖 𝜖z 2 𝐹(𝑨, 𝑢) − 𝜖𝑢 𝐹 𝑨, 𝑢 − 𝜏 𝐹 𝑨, 𝑢 = 𝑄 0 𝜀(𝑨)𝜀𝑢 , (Weaver 1998) (Weaver & Sachse 1995) D is the ultrasonic diffusivity (through random media ), 𝝉 is the energy dissipation rate , 𝐹 𝑨, 𝑢 is the ultrasonic energy density as a function of time t and propagation distance z −𝑨2 1 4𝐸𝑢 𝑓 −𝜏𝑢 𝐹 𝑨, 𝑢 = 𝑄 0 2 𝜌𝐸𝑢 𝑓 + 0.51𝑚𝑜𝑢 = 𝐷 − 𝑨 2 𝑚𝑜 𝐹 𝑨, 𝑢 4𝐸𝑢 − 𝜏𝑢 Analysis of scatter field ; diffuse wave (Quiviger et al. 2012)

  18. Te Test st 2 : 2 : ex exam ample ple of su of surfa rface ce wav wave e sign signal al ac acro ross ss diff differ eren ent t RSD RSD da damag mage e leve level -4 x 10 r1 4 r1 r0 r2 r2 r1 r3 3 r3 r2 2 Amplitude(V) 1 0 -1 -2 Integrated signal energy analysis -3 -4 2.8 3 3.2 3.4 3.6 3.8 4 4.2 Time(sec) -4 x 10 Are individual signal data reliable? R1 R2 R3

  19. Te Test 3 : spa st 3 : spatially a tially ave verag raged ed sign signals als from mu from multi lti sensor array sen sor array Array averaged = Group = position, p1, p2…. Statistical analysis for inhomogeneous material 𝑂 𝑞𝑏𝑢ℎ 1 S avr t = T avr_y t 𝑂 𝑞𝑏𝑢ℎ y=1 Total seventy signal of each damage region

  20. Tes Test t 3 : 3 : ar arra ray y av aver erag aged ed sign signals als ac acro ross ss te test st ar area ea Each one has seven averaged data -4 avrsensor1 x 10 -4 avrsensor2 -4 x 10 avrsensor3 x 10 6 avr P1 avr P1 6 6 avr P2 avr P2 avr P3 avr P3 4 4 avr P4 4 avr P4 avr P5 avr P5 2 avr P6 avr P6 Amplitude(V) 2 2 Amplitude(V) Amplitude(V) avr P7 avr P7 avr P8 avr P8 0 avr P1 avr P9 avr P9 0 0 avr P2 avr P10 avr P10 avr P3 -2 -2 avr P4 -2 avr P5 avr P6 -4 -4 -4 avr P7 avr P8 -6 avr P9 -6 -6 avr P10 2 3 4 2 3 4 2 3 4 Time(sec) -4 x 10 Time(sec) -4 Time(sec) -4 x 10 x 10 R1 : No damage R3 : Serious Damage R2 : Middle level

  21. Te Test st 3 : 3 : ar arra ray y av aver erag aged ed sign signals als ac acro ross ss te test st ar area ea Seven Averaged data region =1, position =1 region =3, position =1 region =2, position =1 -11 -11 -11 1 1 1 -11.5 2 -11.5 -11.5 2 2 3 3 3 -12 4 -12 -12 4 4 5 5 5 -12.5 -12.5 -12.5 6 6 6 7 7 7 -13 -13 -13 8 8 8 ln(E) 2 ln(E) 2 ln(E) 2 9 9 9 -13.5 -13.5 -13.5 10 10 10 -14 -14 -14 -14.5 -14.5 -14.5 -15 -15 -15 -15.5 -15.5 -15.5 -16 -16 2 3 4 -16 2 3 4 2 3 4 Time(sec) -4 x 10 Time(sec) -4 x 10 Time(sec) -4 x 10 R1 : No damage R3 : Serious Damage R2 : Middle level

  22. Te Test st 3 : 3 : qu quan antificat tification ion an and st d stat atistic istical al inte interp rpre reta tation tion 10 d diff iffere rent t position sition average avera ged d da data ta on on positi position on-1 1 ha has s 7 si 7 sign gnals als region =3, position =1 region =3, position =10 -11 -11 1 -11.5 2 3 -12 -12 4 5 -12.5 6 7 -13 -13 ln(E) 8 ln(E) ln(E) 2 9 -13.5 10 -14 -14 -14.5 -15 -15 -15.5 -16 2 3 4 -16 2 3 4 Time(sec) -4 x 10 Time(sec) -4 x 10 range from =0.002s, to =0.0035s -1900 0 Area of ln(E) -2000 Area of ln(E) 2 area of ln(E) -2100 So, a B So, a Box ox plot plot ha has -2200 seven sev en array si array signa gnals ls 0 -2300 -2400 1 2 3 4 5 6 7 8 9 10 Position

  23. Te Test st 3 : 3 : qu quan antificat tification ion an and st d stat atistic istical al inte interp rpre reta tation tion range from =0.002s, to =0.0035s range from =0.002s, to =0.0035s range from =0.002s, to =0.0035s -1900 -1900 -1900 -2000 -2000 -2000 area of ln(E) 2 area of ln(E) 2 area of ln(E) 2 -2100 -2100 -2100 -2200 -2200 -2200 -2300 -2300 -2300 -2400 -2400 -2400 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Position 1 2 3 4 5 6 7 8 9 10 Position Position R1 R2 R3 Va Varia riability bility

Recommend


More recommend