Supersymmetric Dark Matter: CMSSM-like Models in the LHC era 1) With CMSSM-like models pushed to high mass scales, can we still ‘guarantee’ Supersymmetry’s discovery at the LHC. Viable dark matter models in the CMSSM tend to lie in strips (co-annihilation, funnel, focus point), how far up in energy do these strips extend? � 2) How detectable is DM along these strips � 3) Generalization of the CMSSM
Why Supersymmetry (still)? Gauge Coupling Unification Gauge Hierarchy Problem Stabilization of the Electroweak Vacuum Radiative Electroweak Symmetry Breaking Dark Matter Improvement to low energy phenomenology? but, m h ~ 125 GeV, and no SUSY?
Which Supersymmetric Model? MSSM with R-Parity (still more than 100 parameters)
SUSY Superpotential + Soft terms h u H 2 Qu c + h d H 1 Qd c + h e H 1 Le c + µH 2 H 1 = W − 1 2 M α λ α λ α − m 2 ij φ i ∗ φ j = L soft − A u h u H 2 Qu c − A d h d H 1 Qd c − A e h e H 1 Le c − BµH 2 H 1 + h.c. � v 1 � 0 � � � H 1 � = � H 2 � = 0 v 2 tan β = v 2 v 1 R-parity conservation assumed
Which Supersymmetric Model? MSSM with R-Parity (still more than 100 parameters) Gaugino mass Unification A-term Unification Scalar mass unification h u H 2 Qu c + h d H 1 Qd c + h e H 1 Le c + µH 2 H 1 W = − 1 2 M α λ α λ α − m 2 ij φ i ∗ φ j L soft = − A u h u H 2 Qu c − A d h d H 1 Qd c − A e h e H 1 Le c − BµH 2 H 1 + h.c.
CMSSM Spectra Unification to rich spectrum + EWSB Falk
Which Supersymmetric Model? CMSSM (4+ parameters) Parameters: m 1/2 , m 0 , A 0 , tan β , sgn( μ ) {m 3/2 } Pure Gravity Mediation (PGM) (2+ parameters) Parameters: m 3/2 , tan β , sgn( μ ) mSUGRA (3+ parameters) Parameters: m 1/2 , m 3/2 , A 0 , sgn( μ ) � Anomaly mediation: mAMSB (3+ parameters) Parameters: m 3/2 , m 0 , tan β , sgn( μ ) � � � � �
Which Supersymmetric Model? CMSSM (4+ parameters) Parameters: m 1/2 , m 0 , A 0 , tan β , sgn( μ ) {m 3/2 } subGUT-CMSSM (5+ parameters) Parameters: m 1/2 , m 0 , A 0 , tan β , M in , sgn( μ ) {m 3/2 } � NUHM (5,6+ parameters) Parameters: m 1/2 , m 0 , m 1, m 2, A 0 , tan β , sgn( μ ) {m 3/2 } � SU(5) models (7+ parameters) Parameters: m 1/2 , m 5 , m 10, m 1, m 2, A 0 , tan β , sgn( μ ) {m 3/2 } � � � � �
tan � = 10 , µ > 0 tan � = 55 , µ > 0 800 800 1500 1500 m h = 114 GeV 700 700 m h = 114 GeV m � ± �� = 104 GeV 600 600 m 0 (GeV) m 0 (GeV) 1000 1000 500 500 400 400 300 300 200 200 100 100 0 0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 100 100 1000 1000 2000 2000 3000 3000 m 1/2 (GeV) m 1/2 (GeV) Ellis, Olive, Santoso, Spanos
The Higgs mass in the CMSSM 300 16000 All points after cuts Points satisfying g-2 14000 250 12000 200 10000 Count Count 150 8000 6000 100 4000 50 2000 0 0 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 109 112 115 118 121 124 127 130 m h (GeV) m h (GeV) Ellis, Nanopoulos, Olive, Santoso
Mastercode - MCMC Long list of observables to constrain CMSSM parameter space Multinest N ( C i − P i ) 2 MCMC technique to sample efficiently the χ 2 = � σ ( C i ) 2 + σ ( P i ) 2 SUSY parameter space, and thereby i + χ 2 ( M h ) + χ 2 (BR( B s → µµ )) construct the χ 2 probability function + χ 2 (SUSY search limits) Combines SoftSusy, FeynHiggs, SuperFla, M ( f obs SM i − f fit SM i ) 2 SuperIso, MicrOmegas, and SSARD � + σ ( f SM i ) 2 i Purely frequentist approach (no priors) and relies only on the value of χ 2 at the point sampled and not on the distribution of sampled points. Bagnaschi, Buchmueller, Cavanaugh, Citron, Colling, De 400 million points sampled Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Malik, Marrouche, Nakach, Olive, Paradisi, Rogerson, Ronga, Sakurai, Martinez Santos, de Vries, Weiglein
Δχ 2 map of m 0 - m 1/2 plane Mastercode 2009 2500 25 ] 2 2 � [GeV/c � 2000 20 1/2 m 1500 15 1000 10 500 5 0 0 0 500 1000 1500 2000 2500 2 m [GeV/c ] 0 Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, CMSSM Isidori, Olive, Ronga, Weiglein
Elastic scaterring cross-section Mastercode 2009 -40 1 10 ] 1-CL 2 [cm 0.9 -41 10 0.8 SI p -42 σ 10 0.7 -43 10 0.6 -44 0.5 10 0.4 -45 10 0.3 -46 10 0.2 -47 10 0.1 -48 0 10 3 2 10 10 2 m [GeV/c ] 0 ~ χ 1 Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, CMSSM Isidori, Olive, Ronga, Weiglein
m 1/2 - m 0 planes incl. LHC tan � = 10 , � > 0 tan � = 55 , � > 0 800 800 1500 1500 LHC m h = 114 GeV LHC 700 700 117.5 GeV 600 600 m 0 (GeV) m 0 (GeV) m h = 119 GeV 1000 500 500 400 400 300 300 119 GeV 200 200 100 100 0 0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 100 100 1000 1000 2000 2000 3000 3000 m 1/2 (GeV) m 1/2 (GeV) CMSSM Ellis, Olive, Santoso, Spanos
Δχ 2 map of m 0 - m 1/2 plane Mastercode 2015 Low mass spectrum still observable at LHC 14 TeV 3000 fb -1 8 TeV 20 fb -1 Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, CMSSM Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein
Elastic scaterring cross-section Mastercode 2015 New LUX bound +PandaX Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, CMSSM Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein
The Strips: Stau-coannhilation Strip extends only out to ~1 TeV Stop-coannihilation Strip � � �
Stop strip tan β = 6, A 0 = -4.2 m 0 , µ < 0 20 130 131 130 128 129 127 126 124 122 128 131 131 130 131 127 129 126 130 129 129 130 126 127 130 124 123 130 125 123 124 128 128 129 122 125 122 130 131 126 1 2 8 128 125 127 124 131 130 122 127 1 3 1 130 131 123 131 126 127 131 130 127 123 122 1 2 9 124 125 126 124 127 125 126 128 129 131 130 122 126 129 130 130 124 125 127 122 131 124 131 123 125 126 126 129 124 130 131 131 128 123 124 131 125 1 129 122 130 127 126 131 128 130 127 123 129 3 122 123 130 124 122 129 130 128 125 128 1 131 126 128 124 125 123 123 123 128 131 128 127 127 1 2 6 131 128 130 131 127 125 130 131 131 130 128 1 131 3 128 129 1 123 1 127 130 124 126 3 126 9 126 129 m 0 (TeV) 0 125 122 1 2 3 2 131 1 124 125 129 127 131 131 4 129 130 126 123 2 130 131 1 130 130 131 129 0.5 131 130 131 129 128 127 131 130 131 128 129 124 126 130 129 128 129 123 8 1 3 0 127 130 2 0.05 0.01 130 127 128 125 1 1 3 1 127 0.5 129 129 128 0 0.066 122 131 3 0.1 131 1 1 0.01 0.05 130 131 4 130 129 126 125 2 129 126 1 129 127 124 127 126 1.0 127 128 126 7 2 8 1 2 123 1 125 125 0.066 128 0.05 0.01 125 130 0.066 0.1 128 0.5 � 123 10 129 124 126 128 126 124 100 TeV 3000 fb -1 � 9 126 2 X 1 127 129 125 33 TeV 3000 fb -1 � 4 123 2 125 1 0.01 5 0 123 . 0 122 124 0.1 14 TeV 3000 fb -1 � 127 124 127 126 122 125 0.066 14 TeV 300 fb -1 � 128 123 122 123 8 TeV 20 fb -1 125 0.05 122 123 124 0.01 122 124 0 1.0 1.0 3 3.0 5 5.0 7.0 7.0 9.0 9.0 m 1/2 (TeV) Ellis, Evans, Mustafayev, Nagata, Olive
Improved in an SU(5) superGUT extension tan β = 6, m 1/2 = 4 TeV, µ < 0 tan β = 6, m 1/2 = 4 TeV, µ < 0 5 5 5 5 1 2 129 8 127 2 1 123 130 124 1 2 125 0.01 M in = 10 17 GeV M in = M GUT 9 1 1 127 122 127 128 2 0.05 129 130 124 126 3 129 1 5 131 128 126 130 129 129 1 2 7 1 122 1 131 2 1 128 123 126 130 2 2 9 129 127 8 1 3 5 2 130 2 5 128 127 1 6 124 1 127 2 1 2 2 130 129 3 1 127 131 6 1 1 131 2 1 2 129 128 126 127 126 6 5 127 2 130 3 127 5 1 126 0.066 127 1 4 2 2 2 2 129 130 127 1 1 3 5 131 1 128 125 125 1 2 126 131 2 1 1 4 7 127 2 126 2 127 129 130 128 0.01 4 9 128 126 129 126 1 128 1 2 126 0 2 1 . 124 0 3 131 1 1 128 126 1 2 3 1 1 1 8 0 2 2 130 128 2 -A 0 /m 0 -A 0 /m 0 9 5 9 124 124 1 124 2 9 131 7 1 2 130 2 129 1 5 1 1 125 1 2 9 2 2 124 6 3 131 0.05 4 130 2 1 126 131 0 . 0 1 0.1 128 1 2 5 130 128 8 127 0 2 127 125 1 127 1 . 2 0 8 6 1 127 6 2 0.05 122 6 1 129 2 1 126 9 128 2 3 4 4 4 4 125 1 125 1 2 0.01 2 1 124 125 6 7 2 1 0 . 0 1 8 2 125 126 0.066 4 1 2 4 130 129 128 125 0.066 0.05 130 123 1 2 127 127 129 8 1 0.05 . 0.1 129 129 0 1 1 2 2 6 0.01 1 3 0 0.066 3 3 1 1 0 . 0 5 0.066 126 8 126 0.05 2 7 122 9 128 1 2 2 126 1 1 1 0.1 126 0 . 0 1 2 0.066 5 124 127 0.01 1 2 7 123 0 . 1 124 125 123 0.05 126 0.066 0.1 124 128 3 3 3 3 5 10 15 5 10 15 m 0 (TeV) m 0 (TeV) Ellis, Evans, Mustafayev, Nagata, Olive
Recommend
More recommend