superb and super kekb superb and super kekb the precision
play

SuperB and Super KEKB SuperB and Super KEKB The Precision - PowerPoint PPT Presentation

SuperB and Super KEKB SuperB and Super KEKB The Precision Frontier Precision Frontier The U. Wienands U. Wienands SLAC, presently at CERN SLAC, presently at CERN Former PEP-II Run Coordinator Former PEP-II Run Coordinator


  1. SuperB and Super KEKB SuperB and Super KEKB The “ “Precision Frontier Precision Frontier” ” The U. Wienands U. Wienands SLAC, presently at CERN SLAC, presently at CERN Former PEP-II Run Coordinator Former PEP-II Run Coordinator I am indebted to M. Iwasaki and to M. Masuzawa, KEK, for providing me with I am indebted to M. Iwasaki and to M. Masuzawa, KEK, for providing me with material on Super KEKB material on Super KEKB U. Wienands, SLAC 1 U. de Paris, 16-Sep-10

  2. Outline Outline • Introduction Introduction • • The Crab Waist The Crab Waist • • The SuperB proposals The SuperB proposals • • Conclusion Conclusion • U. Wienands, SLAC 2 U. de Paris, 16-Sep-10

  3. B -Factories: Success Story -Factories: Success Story B 34 /cm 2 /s, about 0.5 ab –1 1 • PEP-II: 1.2 10 PEP-II: 1.2 10 34 /cm 2 /s, about 0.5 ab – • KEKB: 2.1 10 34 34 /cm /cm 2 2 /s, about 1 ab /s, about 1 ab – –1 1 • KEKB: 2.1 10 • • PEP-II/BaBar together with KEKB-Belle: PEP-II/BaBar together with KEKB-Belle: • – Definitive measurement of sin(2 ß ), solid foundation for CKM formalism – Exceeded their physics goals – Proved that multi-ampere beam currents can be handled • up to 3.2 A @ 3.1 GeV; 2 A @ 9 GeV in PEP-II – Proved that background is manageable • s.r. background as well as lost-particle background – Proved that high overall efficiency can be maintained • PEP-II/BaBar reached >85% up time U. Wienands, SLAC 3 U. de Paris, 16-Sep-10

  4. Super B B -Factories -Factories Super • A growing momentum has built up to expand on A growing momentum has built up to expand on • the program and push for new reach on the the program and push for new reach on the “precision frontier precision frontier” ” “ –1 1 100 ab – • This physics reach is possible with 50 This physics reach is possible with 50… …100 ab • of data of data • In order to gather such an amount in a reasonable In order to gather such an amount in a reasonable • 36 cm –2 2 s –1 1 is time, a peak luminosity of ≈ ≈ 10 10 36 cm – s – is time, a peak luminosity of necessary necessary U. Wienands, SLAC 4 U. de Paris, 16-Sep-10

  5. + – Luminosity Trend e + e – e Luminosity Trend e U. Wienands, SLAC 5 U. de Paris, 16-Sep-10

  6. Luminosity Equation Luminosity Equation • It then follows that, for fixed beam-beam parameter ξ , one • It then follows that, for fixed beam-beam parameter ξ , one needs higher beam current and/or lower ß needs higher beam current and/or lower ß y y * * . . U. Wienands, SLAC 6 U. de Paris, 16-Sep-10

  7. Strategies Strategies • Head-on collisions ( R R L =1): hourglass becomes important • Head-on collisions ( L =1): hourglass becomes important – σ l ≥ 2 mm – > ß * ≥ 2 mm => need O(10) A beam current  • Crossing angle (horizontal): • Crossing angle (horizontal): – foreshortens the IP => ß* ≤ σ l is possible – > synchro-betatron coupling due to beam-beam   can reduce or eliminate the effect of crossing angle  • “Crab Waist Crab Waist” ” can reduce or eliminate the effect of crossing angle • “ – Raimondi, LNF, based on earlier work by Balakin, BINP – Successfully operated at DA Φ NE, Luminosity gain ≈ *2.5. U. Wienands, SLAC 7 U. de Paris, 16-Sep-10

  8. High Beam Current/Short Bunches High Beam Current/Short Bunches • Problems of high beam current for short bunches: Problems of high beam current for short bunches: • BPM damage due to overheating Rf seal damage U. Wienands, SLAC 8 U. de Paris, 16-Sep-10

  9. Crab Waist Crab Waist Crab sextupoles: n Crab sextupoles: n π π in x; in x; Raimondi (n+1/2) π (n+1/2) π in y from IP in y from IP Graphics by E. Paoloni Tune scan, red red=higher luminosity =higher luminosity Tune scan, U. Wienands, SLAC 9 U. de Paris, 16-Sep-10

  10. DA Φ NE Luminosity DA Φ NE Luminosity Crab Waist U. Wienands, SLAC 10 U. de Paris, 16-Sep-10

  11. Towards next-Generation B B -Factories -Factories Towards next-Generation • Both Both B B -Factory teams have proposed upgrades -Factory teams have proposed upgrades • exploiting this scheme: exploiting this scheme: – Super KEKB: Upgrade of existing KEKB – Super B : New facility, to be built at LNF in a collaboration of LNF, SLAC, several European Laboratories and BINP Novosibirsk. • While the challenges are similar for both facilities, While the challenges are similar for both facilities, • they differ in the details: they differ in the details: – Super KEKB: ≈ 3 km circumference (KEKB tunnel), no polarized beam, KEKB hardware – Super B : 1.25 km circumference, polarized electrons, PEP-II hardware U. Wienands, SLAC 11 U. de Paris, 16-Sep-10

  12. Common Features Common Features • Energy asymmetry: 4 on 7 GeV Energy asymmetry: 4 on 7 GeV • • Crossing angle: Crossing angle: 2* 41.5 mr, 2*30 mr 2* 41.5 mr, 2*30 mr • • Small beam emittances (nmr in Small beam emittances (nmr in x x , pmr in , pmr in y y ) ) • – Beam aspect ratios ≈ 1/100 • Beam currents up to Beam currents up to ≈ ≈ 3.5 A or less 3.5 A or less • • Bunch length Bunch length ≈ ≈ 5 mm 5 mm • • Short beam lifetime ( Short beam lifetime ( ≈ ≈ 5 min) 5 min) • – continuous injection (“trickle charge”) U. Wienands, SLAC 12 U. de Paris, 16-Sep-10

  13. KEKB/SuperKEKB KEKB/SuperKEKB U. Wienands, SLAC 13 U. de Paris, 16-Sep-10

  14. KEKB Site KEKB Site U. Wienands, SLAC 14 U. de Paris, 16-Sep-10

  15. Super KEKB Parameters Super KEKB Parameters U. Wienands, SLAC 15 U. de Paris, 16-Sep-10

  16. Low Emittance Lattice Low Emittance Lattice • Achieving low emittance with minimum change Achieving low emittance with minimum change • – Replace short dipoles with longer ones for LER ≈ 100 0.89 m dipoles replaced with 4 m ones. U. Wienands, SLAC 16 U. de Paris, 16-Sep-10

  17. SuperKEKB Lattice SuperKEKB Lattice Crab Crab U. Wienands, SLAC 17 U. de Paris, 16-Sep-10

  18. Super B B Parameters Parameters Super + ) on 4.18 ( – ) GeV • Energy: Energy: 6.78 ( e e + ) on 4.18 ( e e – ) GeV • 6.78 ( • Half crossing angle: Half crossing angle: 30 mr • 30 mr • Horiz. emittance: Horiz. emittance: 2 on 2.5 nmr • 2 on 2.5 nmr • Vertic. emittance: Vertic. emittance: 5 on 6 nmr • 5 on 6 nmr • ß ß x / ß ß y at IP: 26/0.25 on 32/0.21 mm 32/0.21 mm • x / y at IP: 26/0.25 on • Beam currents: Beam currents: 1.9 on 2.5 A • 1.9 on 2.5 A • Beam-beam parameter Beam-beam parameter ξ : 0.097 • y : 0.097 ξ y • Beam lifetime: Beam lifetime: 4.2 on 4.5 min • 4.2 on 4.5 min 36 cm –2 2 s –1 1 • Luminosity: Luminosity: 1 × 10 36 cm – s – • 1 × 10 U. Wienands, SLAC 18 U. de Paris, 16-Sep-10

  19. U. Wienands, SLAC 19 U. de Paris, 16-Sep-10

  20. Super B B Tunnel Layout Tunnel Layout Super U. Wienands, SLAC 20 U. de Paris, 16-Sep-10

  21. Low Emittance Lattice Low Emittance Lattice • Lattice near TME Lattice near TME • – synch.-rad. type design µ x = 3 π , µ y = π Cell in HER • In the LER, dipole In the LER, dipole • position adjusts the position adjusts the emittance emittance µ x = 3 π , µ y = π Cell in LER • ≈ ≈ 5 mm bunch 5 mm bunch • length length – acceptable U. Wienands, SLAC 21 U. de Paris, 16-Sep-10

  22. LER Interaction Region LER Interaction Region • Spin Rotator outside local chromaticity correction Spin Rotator outside local chromaticity correction • V12 X-sext Y-sext Crab Match & SR U. Wienands, SLAC 22 U. de Paris, 16-Sep-10

  23. Chromatic behaviour of the IP Chromatic behaviour of the IP • ß ß chromaticity ( chromaticity ( W W ) corrected at IP ) corrected at IP • – necessary condition for high momentum bandwidth U. Wienands, SLAC 23 U. de Paris, 16-Sep-10

  24. SuperB LER Spin Rotation SuperB LER Spin Rotation • 90° spin rotation about x x axis axis • 90° spin rotation about – 90° about z followed by 270° about y • “flat flat” ” geometry => no vertical emittance growth geometry => no vertical emittance growth • “ • Solenoid scales with energy => LER more economical • Solenoid scales with energy => LER more economical • Solenoids are split & decoupling optics added. • Solenoids are split & decoupling optics added. IP HER LER S.r. dipoles Compton IP for polarimetry (270° spin) LER HER S.r. solenoids (90° spin) U. Wienands, SLAC 24 U. de Paris, 16-Sep-10

  25. SuperB LER Polarization SuperB LER Polarization 3.5 min beam lifetime U. Wienands, SLAC 25 U. de Paris, 16-Sep-10

  26. Polarimetry Polarimetry – detection • Compton polarimeter, Compton polarimeter, γ and e e – detection • γ and – bunch-by-bunch, < 1% systematic error U. Wienands, SLAC 26 U. de Paris, 16-Sep-10

  27. Super KEKB Final-Focusing system Super KEKB Final-Focusing system • Crossing angle 83 mrad to make the FF magnets close to • Crossing angle 83 mrad to make the FF magnets close to IP IP U. Wienands, SLAC 27 U. de Paris, 16-Sep-10

  28. Super KEKB IR Beam Pipe Super KEKB IR Beam Pipe • Crotched structures (Two FF Q-magnets in both Crotched structures (Two FF Q-magnets in both • sides) sides) • 1cm radius of vtx chamber 1cm radius of vtx chamber • e- e+ U. Wienands, SLAC 28 U. de Paris, 16-Sep-10

Recommend


More recommend