Stochastic model reduction: from nonlinear Galerkin to parametric inference Fei Lu Department of Mathematics, Johns Hopkins Joint work with: Alexandre J. Chorin (UC Berkeley) Kevin K. Lin (U. of Arizona) May 22, 2019 SIAM DS19, Snowbird 1 / 24
Consider dissipative PDEs in operator form: v t = + B ( v ) + f , Av ���� ���� self − adjoint nonlinear Examples: Burgers v t = ν v xx − vv x + f ( x , t ) , Kuramoto-Sivashinsky: v t = − v xx − ν v xxxx − vv x 2 / 24
To resolve the Eq. by Fourier-Galerkin (when periodic BC) � d v k + ik v k − l + � dt � v k = − q ν k � v l � � f k ( t ) , 2 | l |≤ N , | k − l |≤ N Need: N � 5 /ν Fourier modes, dt ∼ 1 / N . E.g. ν = 10 − 4 : spatial grid= 5 × 10 4 , time steps= 5 T × 10 4 We are mainly interested in large scales, K << N . Question: a reduced model for ( � v 1 : K ) ? Reduce spatial dimension + Increase time step-size 3 / 24
Motivation: data assimilation in weather/climate prediction High-dimensional Discrete partial Prediction Full system data x ′ = f ( x ) + U ( x , y ) , Observe only Forecast y ′ = g ( x , y ) . { x ( nh ) } N n = 1 . x ( t ) , t ≥ Nh . HighD multiscale full chaotic/ergodic systems: ◮ can only afford to resolve x ′ = f ( x ) online ◮ y : unresolved variables (subgrid-scales) Discrete noisy observations: missing i.c. Ensemble prediction: need many simulations 4 / 24
x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Data { x ( nh ) } N n = 1 Objective: Develop a closed reduced model of x that captures key statistical + dynamical properties use it for online state estimation and prediction [Approximate the stochastic process ( x ( t ) , t > 0 ) in distribution.] 5 / 24
Various efforts in closure model reduction: Direct constructions: ◮ non-linear/Petrov- Galerkin: y ( t ) = F ( x ( t )) ◮ Mori-Zwanzig formalism (memory) → statistical approximation by a non-Markov process ◮ relaxation approximations ◮ linear response / filtering / feedback control ◮ . . . Inference/Data-driven ROM ◮ hypoellitpic SDEs, GLEs and SDDEs ◮ discrete-time (time series) models ◮ data-driven: POD, DMD, Kooperman operator ◮ nonparametric inference ◮ machine learning (NN’s) . . . 6 / 24
Inference-based model reduction SDEs or time series – dynamical models 7 / 24
Differential system or discrete-time system? X ′ = f ( X ) + Z ( t , ω ) X n + 1 = X n + R h ( X n ) + Z n informative non-intrusive Inference 1 likelihood Discretization 2 error correction by data − − − − − − − − − 1 Brockwell, Sørensen, Pokern, Wiberg, Samson,. . . 2 Milstein, Tretyakov, Talay, Mattingly, Stuart, Higham, . . . 8 / 24
Discrete-time stochastic parametrization NARMA( p , q ) [Chorin-Lu (15)] X n = X n − 1 + R h ( X n − 1 ) + Z n , Z n = Φ n + ξ n , p q r s � � � � Φ n = a j X n − j + b i , j P i ( X n − j ) + c j ξ n − j j = 1 j = 1 i = 1 j = 1 � �� � � �� � Auto-Regression Moving Average R h ( X n − 1 ) from a numerical scheme for x ′ ≈ f ( x ) Φ n depends on the past NARMAX in system identification Z n = Φ( Z , X ) + ξ n , Tasks: Structure derivation: terms and orders ( p , r , s , q ) in Φ n ; Parameter estimation: a j , b i , j , c j , and σ . Conditional MLE 9 / 24
Model reduction for dissipative PDEs by parametric inference 10 / 24
Kuramoto-Sivashinsky: v t = − v xx − ν v xxxx − vv x Burgers: v t = ν v xx − vv x + f ( x , t ) , Goal: a closed model for ( � v 1 : K ) , K = 2 K 0 << N . � d v k + ik v k − l + � v k = − q ν dt � k � � v l � f k ( t ) , 2 | l |≤ K , | k − l |≤ K � + ik � v l � v k − l 2 | l | > K or | k − l | > K View ( � v 1 : K ) ∼ x , ( � v k > K ) ∼ y : x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . TODO: represent the effects of high modes to the low modes 11 / 24
Derivation of a parametric form (KSE) Let v = u + w . In operator form: v t = Av + B ( v ) , du dt = PAu + PB ( u ) + [ PB ( u + w ) − PB ( u )] dw dt = QAw + QB ( u + w ) Nonlinear Galerkin: approximate inertial manifold (IM) 1 dw dt ≈ 0 ⇒ w ≈ A − 1 QB ( u + w ) ⇒ w ≈ ψ ( u ) Need: spectral gap condition ; dim = ( u ) > K : parametrization with time delay (Lu-Lin17) 1 Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94) 12 / 24
Derivation of a parametric form (KSE) Let v = u + w . In operator form: v t = Av + B ( v ) , du dt = PAu + PB ( u ) + [ PB ( u + w ) − PB ( u )] dw dt = QAw + QB ( u + w ) Nonlinear Galerkin: approximate inertial manifold (IM) 1 dw dt ≈ 0 ⇒ w ≈ A − 1 QB ( u + w ) ⇒ w ≈ ψ ( u ) Need: spectral gap condition ; dim = ( u ) > K : parametrization with time delay (Lu-Lin17) A time series (NARMA) model of the form u n k = R δ ( u n − 1 ) + g n k + Φ n k , k with Φ n k := Φ n k ( u n − p : n − 1 , f n − p : n − 1 ) in form of p � � k , j u n − j k , j R δ ( u n − j u n − j Φ n c v + c R ) + c w u n − 1 � � k = k , j k k l k − l j = 1 | k − l |≤ K , K < | l |≤ 2 K or | l |≤ K , K < | k − l |≤ 2 K 1 Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94) 13 / 24
Test setting: ν = 3 . 43 N = 128, dt = 0 . 001 Reduced model: K = 5, δ = 100 dt 3 unstable modes 2 stable modes Long-term statistics: Data Data Truncated system Truncated system 0.8 NARMA NARMA 0 10 0.6 pdf ACF 0.4 0.2 − 2 10 0 − 0.2 − 0.4 − 0.2 0 0.2 0.4 0.6 0 10 20 30 40 50 Real v 4 time probability density function auto-correlation function 14 / 24
Prediction A typical forecast: RMSE of many forecasts: 0.5 the truncated system 15 v 4 0 − 0.5 RMSE the truncated system 10 20 40 60 80 0.4 NARMA 0.2 5 NARMA 0 v 4 − 0.2 − 0.4 0 20 40 60 80 20 40 60 80 time t lead time Forecast time: the truncated system: T ≈ 5 the NARMA system: T ≈ 50 ( ≈ 2 Lyapunov time) 15 / 24
Derivation of a parametric form: stochastic Burgers Let v = u + w . In operator form: du dt = PAu + PB ( u ) + Pf + [ PB ( u + w ) − PB ( u )] dw dt = QAw + QB ( u + w ) spectral gap: Burgers ? (likely not) w ( t ) is not function of u ( t ) , but a functional of its path 16 / 24
Derivation of a parametric form: stochastic Burgers Let v = u + w . In operator form: du dt = PAu + PB ( u ) + Pf + [ PB ( u + w ) − PB ( u )] dw dt = QAw + QB ( u + w ) spectral gap: Burgers ? (likely not) w ( t ) is not function of u ( t ) , but a functional of its path Integration instead: � t w ( t ) = e − QAt w ( 0 ) + e − QA ( t − s ) [ QB ( u ( s ) + w ( s ))] ds 0 w n ≈ c 0 QB ( u n ) + c 1 QB ( u n − 1 ) + · · · + c p QB ( u n − p ) Linear in parameter approximation: PB ( u + w ) − PB ( u ) = P [( uw ) x + ( u 2 ) x ] / 2 ≈ P [( uw ) x ] / 2 + noise p � c j P [( u n QB ( u n − j )) x ] + noise ≈ j = 0 17 / 24
A time series (NARMA) model of the form k = R δ ( u n − 1 u n ) + f n k + g n k + Φ n k , k with Φ n k := Φ n k ( u n − p : n − 1 , f n − p : n − 1 ) in form of p � � k , j u n − j k , j R δ ( u n − j u n − j Φ n c v + c R ) + c w u n − 1 � � k = k , j k − l k k l j = 1 | k − l |≤ K , K < | l |≤ 2 K or | l |≤ K , K < | k − l |≤ 2 K 18 / 24
Numerical tests: ν = 0 . 05, K 0 = 4 → random shocks Spectrum 10 0 True Truncated NAR Spectrum 10 -1 Full model: N = 128 , dt = 0 . 005 10 -2 1 2 3 4 5 6 7 8 Wavenumber Reduced model: K = 8, δ = 20 dt Energy spectrum 19 / 24
2 | 2 ,|u k | 2 ) k=1 2 | 2 ,|u k | 2 ) k=2 cov(|u cov(|u 10 -3 20 0.06 True ACF 0.04 10 Truncated 0.02 NAR 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 2 | 2 ,|u k | 2 ) k=3 2 | 2 ,|u k | 2 ) k=4 cov(|u cov(|u 10 -3 10 -3 2 2 ACF 0 1 -2 0 -4 -1 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 2 | 2 ,|u k | 2 ) k=5 2 | 2 ,|u k | 2 ) k=6 cov(|u cov(|u 10 -4 10 -4 20 20 ACF 10 10 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 2 | 2 ,|u k | 2 ) k=7 2 | 2 ,|u k | 2 ) k=8 cov(|u cov(|u 10 -4 10 -3 20 4 ACF 10 2 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 Time Lag Time Lag Cross-ACF of energy (4th moments!) 20 / 24
Abs of Mode k=1 Abs of Mode k=2 1 0.5 True 0.5 Truncated 0 0 NAR -0.5 -0.5 -1 0 5 10 15 20 25 0 5 10 15 20 25 Abs of Mode k=3 Abs of Mode k=4 0.4 1 0.2 0.5 0 0 -0.2 -0.4 -0.5 -0.6 0 5 10 15 20 25 0 5 10 15 20 25 Abs of Mode k=5 Abs of Mode k=6 0.5 0.4 0.2 0 0 -0.2 -0.4 -0.5 0 5 10 15 20 25 0 5 10 15 20 25 Abs of Mode k=7 Abs of Mode k=8 0.5 0.5 0 0 -0.5 -0.5 0 5 10 15 20 25 0 5 10 15 20 25 Time Time Trajectory prediction in response to force 21 / 24
Summary and ongoing work x ′ = f(x) + U(x,y), y ′ = g(x,y). Data { x ( nh ) } N n = 1 Inference-based stochastic model reduction Inference non-intrusive time series ( NARMA ) “ X ′ = f ( X ) + Z ( t , ω ) ” Inference parametrize projections on path space Discretization → Effective stochastic reduced model “ X n + 1 = X n + R h ( X n ) + Z n ” for prediction 22 / 24
Open problems: model reduction: model selection post-processing theoretical understanding of the approximation ◮ distance between the two stochastic processes? 23 / 24
Recommend
More recommend