data assimilation with stochastic model reduction of
play

Data Assimilation with Stochastic Model Reduction of Chaotic Systems - PowerPoint PPT Presentation

Data Assimilation with Stochastic Model Reduction of Chaotic Systems Fei Lu Department of Mathematics, Johns Hopkins Joint work with: Alexandre J. Chorin (UC Berkeley) Kevin K. Lin (U. of Arizona) Xuemin Tu (U. of Kansas) Snowbird, SIAM-DS,


  1. Data Assimilation with Stochastic Model Reduction of Chaotic Systems Fei Lu Department of Mathematics, Johns Hopkins Joint work with: Alexandre J. Chorin (UC Berkeley) Kevin K. Lin (U. of Arizona) Xuemin Tu (U. of Kansas) Snowbird, SIAM-DS, May 23, 2019 1 / 24

  2. Model error from sub-grid scales ECMWF: 16 km horizontal grid → 10 9 freedoms From: Wikipedia, ECWMF The Lorenz 96 system Wilks 2005 2 / 24

  3. Model error from sub-grid scales High-dimensional Discrete partial Prediction Full system data x ′ = f ( x ) + U ( x , y ) , Observe only Forecast y ′ = g ( x , y ) . { x ( nh ) } N n = 1 . x ( t ) , t ≥ Nh . ECMWF: 16 km horizontal grid → 10 9 freedoms HighD multiscale full systems: ◮ can only afford to resolve x ′ = f ( x ) ◮ y : unresolved variables (subgrid-scales) Discrete noisy observations: missing i.c. Ensemble prediction: need many simulations The Lorenz 96 system Wilks 2005 3 / 24

  4. Model error from sub-grid scales High-dimensional Discrete partial Prediction Full system data x ′ = f ( x ) + U ( x , y ) , Observe only Forecast y ′ = g ( x , y ) . { x ( nh ) } N n = 1 . x ( t ) , t ≥ Nh . ECMWF: 16 km horizontal grid → 10 9 freedoms HighD multiscale full systems: ◮ can only afford to resolve x ′ = f ( x ) ◮ y : unresolved variables (subgrid-scales) Discrete noisy observations: missing i.c. Ensemble prediction: need many simulations → How to account for the model error U ( x , y ) ? The Lorenz 96 system Wilks 2005 4 / 24

  5. Given a highD multiscale full system: x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Ensemble prediction: can afford to resolve x ′ = f ( x ) online. Accounting model error U ( x , y ) from subgrid scales Indirect approaches: correct the forecast ensemble ◮ e.g. Inflation and Localization; 1 relaxation/bias correction 2 , ◮ in Assimilation step; deficiency in forecast model remains Direct approach: improve the forecast model ◮ parametrization methods 3 , non-Markovian 4 , ◮ random perturbation, averaging+homogenization 5 1 Mitchell-Houtekamer(00), Hamill-Whitaker(05), Anderson(07) 2 Zhang-etc (04), Dee-Da Silva(98) 3 Palmer, Arnold+(01,13), Wilks(05), Meng-Zhang(07), Danforth-Kalnay-Li+(08,09), Berry-Harlim(14), Mitchell-Carrissi(15), Van Leeuwen etc(18) 4 Chorin+(00-15), Marjda-Timofeyev-Harlim+(03-13), Chekroun-Kondrashov- Gil+(11,15), Cromellin+Vanden-Eijinden(08), Gottwald+(15) 5 Hamill-Whitaker(05),Houtekamer+(09) Pavliotis-Stuart(08), Gottwald+(12-13) 5 / 24

  6. Outline 1. Stochastic model reduction (reduction from simulated data) ◮ Discrete-time stochastic parametrization (NARMA) 2. Data assimilation with the reduced model (Noisy data + reduced model → state estimation and prediction) 6 / 24

  7. Stochastic model reduction x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Data { x ( nh ) } N n = 1 Why stochastic reduced models? � N N →∞ The system is “ergodic”: 1 n = 1 F ( x ( nh )) − − − − → � F ( x ) µ ( dx ) N U ( x , y ) acts like a stochastic force 7 / 24

  8. Stochastic model reduction x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Data { x ( nh ) } N n = 1 Why stochastic reduced models? � N N →∞ The system is “ergodic”: 1 n = 1 F ( x ( nh )) − − − − → � F ( x ) µ ( dx ) N U ( x , y ) acts like a stochastic force Memory effects (Mori, Zwanzig, Chorin, Kubo, Majda, Wilks, Ghil, . . . ) Mori-Zwanzig formalism → generalized Langevin equ. � t dx dt = E [ RHS | x ] + K ( x ( s ) , t − s ) ds + W t , � �� � ���� 0 noise Markov term � �� � memory Fluctuation-dissipation theory → Hypoelliptic SDEs dX = a ( X , Y ) dt + Y ; dY = b ( X , Y ) dt + c ( X , Y ) dW , Parametrization: multi-layer stochastic models Goal: develop a non-Markovian stochastic reduced system for x 8 / 24

  9. Discrete-time stochastic parametrization NARMA( p , q ) X n = X n − 1 + R h ( X n − 1 ) + Z n , Z n = Φ n + ξ n , p q r s � � � � Φ n = a j X n − j + b i , j P i ( X n − j ) + c j ξ n − j j = 1 j = 1 i = 1 j = 1 � �� � � �� � Auto-Regression Moving Average R h ( X n − 1 ) from a numerical scheme for x ′ ≈ f ( x ) Φ n depends on the past Tasks: Structure derivation: terms and orders ( p , r , s , q ) in Φ n ; Parameter estimation: a j , b i , j , c j , and σ . 9 / 24

  10. Overview: x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Data { x ( nh ) } N n = 1 Discrete-time stochastic parametrization NARMA X n X n − 1 + R h ( X n − 1 ) + Z n , = 1. compute R h ( x ) Z n = Φ n + ξ n , p q � � 2. derive structure a j X n − j + c j ξ n − j Φ n = j = 1 j = 1 r s 3. estimate parameters � � + b i , j P i ( X n − j ) . j = 1 i = 1 10 / 24

  11. Application to the chaotic Lorenz 96 system A chaotic dynamical system (a simplified atmospheric model) dt x k = x k − 1 ( x k + 1 − x k − 2 ) − x k + 10 − 1 d � y k , j , J j dt y k , j = 1 d ε [ y k , j + 1 ( y k , j − 1 − y k , j + 2 ) − y k , j + x k ] , where x ∈ R 18 , y ∈ R 360 . Find a reduced system for x ∈ R 18 based on ➣ Data { x ( nh ) } N n = 1 ➣ d dt x k ≈ x k − 1 ( x k + 1 − x k − 2 ) − x k + 10. Wilks 2005 11 / 24

  12. � NARMA: x n − 1 + R h ( x n − 1 ) + z n ; z n = Φ n + ξ n , x n = p d x p q � � � � b j , l ( x n − j ) l + Φ n c j R h ( x n − j ) + d j ξ n − j . = a + j = 1 l = 1 j = 1 j = 1 � 1 , h = 0 . 01 ; p = 2 , d x = 3 ; q = 0 , h = 0 . 05 . 6 Wilks 05: an MLR model in atmosphere science 12 / 24

  13. � NARMA: x n − 1 + R h ( x n − 1 ) + z n ; z n = Φ n + ξ n , x n = p d x p q � � � � b j , l ( x n − j ) l + Φ n c j R h ( x n − j ) + d j ξ n − j . = a + j = 1 l = 1 j = 1 j = 1 � 1 , h = 0 . 01 ; p = 2 , d x = 3 ; q = 0 , h = 0 . 05 . � Polynomial autoregression (POLYAR) 6 d dt x k = x k − 1 ( x k + 1 − x k − 2 ) − x k + 10 + U , U = P ( x k ) + η k , with d η k ( t ) = φη k ( t ) + dB k ( t ) . where P ( x ) = � d x j = 0 a j x j . Optimal d x = 5. 6 Wilks 05: an MLR model in atmosphere science 13 / 24

  14. Long-term statistics Empirical probability density function (PDF) L96 L96 0.12 POLYAR POLYAR 0.1 NARMA NARMA 0.1 0.08 0.08 PDF PDF 0.06 0.06 0.04 0.04 0.02 0.02 h=0.01 h=0.05 − 5 0 5 10 − 5 0 5 10 X 1 X 1 Empirical autocorrelation function (ACF) 1 L96 L96 h=0.05 h=0.01 POLYAR POLYAR 0.8 NARMA NARMA 0.6 0.5 0.4 ACF ACF 0.2 0 0 − 0.2 − 0.5 0 2 4 6 8 10 0 2 4 6 8 10 time time 14 / 24

  15. Prediction ( h = 0 . 05 ) A typical ensemble forecast: 10 POLYAR 5 X 1 0 − 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time 10 NARMAX 5 X 1 0 − 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time forecast trajectories in cyan true trajectory in blue 15 / 24

  16. Prediction ( h = 0 . 05 ) RMSE of many forecasts: A typical ensemble forecast: 20 18 10 POLYAR 16 POLYAR 5 X 1 14 0 12 RMSE 10 − 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 NARMAX time 8 6 10 NARMAX 4 5 2 X 1 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 lead time − 5 Forecast time: 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time POLYAR: T ≈ 1 . 25 forecast trajectories in cyan NARMA: T ≈ 2 . 5 (Full model: T ≈ 2 . 5 true trajectory in blue “Best” forecast time achieved! ) 16 / 24

  17. Outline 1. Stochastic model reduction (reduction from simulated data) ◮ Discrete-time stochastic parametrization (NARMA) 2. Data assimilation with the reduced model (Noisy data + reduced model → state estimation and prediction) 17 / 24

  18. Data assimilation with the reduced model x ′ = f ( x ) + U ( x , y ) , y ′ = g ( x , y ) . Noisy data: x ( nh ) + W ( n ) , n = 1 , 2 , . . . Data assimilation: estimate the state of a forward model make prediction (by ensembles of solutions) The widely used method: Ensemble Kalman filters (EnKF) 18 / 24

  19. The Lorenz 96 system Estimate and predict x based on ➣ Noisy Data z ( n ) = x ( nh ) + W ( n ) ➣ Forward models L96x : the truncated model d dt x k ≈ x k − 1 ( x k + 1 − x k − 2 ) − x k + 10 (account for the model error by IL in EnKF ) NARMA (account for the model error by parametrization in the forward model) Wilks 2005 19 / 24

  20. Relative error of state estimation L96x + IL 0.03 NARMA Full model + IL 0.025 relative error 0.02 0.015 0.01 0.005 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 std of observation noise Relative error for different observation noises. (ensemble size: =1000 for L96x and NARMA; =10 for the full model) 20 / 24

  21. RMSE of state prediction 16 14 12 10 RMSE 8 6 4 L96x + IL 2 NARMA Full model + IL 0 0 1 2 3 4 time RMSE of 10 4 ensemble forecasts. (ensemble size: =1000 for L96x and NARMA; =10 for the full model) Summary: The stochastic model improves performance of DA. 21 / 24

  22. Summary and ongoing work Accounting model error U ( x , y ) from subgrid scales x ′ = f(x) + U(x,y), y ′ = g(x,y). Data { x ( nh ) } N Stochastic model reduction by n = 1 Discrete-time stochastic parametrization Inference ◮ simplifies the inference from data ◮ incorporates memory flexibly “ X ′ = f ( X ) + Z ( t , ω ) ” Inference ◮ effective reduced model ( NARMA ) ◮ capture key statistical-dynamical features ◮ make medium-range forecasting Discretization Improve the forecast model “ X n + 1 = X n + R h ( X n ) + Z n ” → Improve performance of DA for prediction 22 / 24

Recommend


More recommend