manifold construction and parameterization for nonlinear
play

Manifold Construction and Parameterization for Nonlinear - PowerPoint PPT Presentation

Manifold Construction and Parameterization for Nonlinear Manifold-Based Model Reduction Chenjie Gu and Jaijeet Roychowdhury {gcj,jr}@eecs.berkeley.edu University of California, Berkeley ASPDAC 2010 Slide 1 Outline Background Background


  1. Manifold Construction and Parameterization for Nonlinear Manifold-Based Model Reduction Chenjie Gu and Jaijeet Roychowdhury {gcj,jr}@eecs.berkeley.edu University of California, Berkeley ASPDAC 2010 Slide 1

  2. Outline Background ● Background ● Introduction to MOR and maniMOR ● Manifold construction and parameterization Manifold construction using integral curves ● Manifold construction using integral curves ● DC manifold and the normalized integral curve equation ● Ideal and almost-ideal manifold ● Algorithm Experimental results ● Experimental results Conclusion ● Conclusion ASPDAC 2010 Slide 2

  3. Background ASPDAC 2010 Slide 3

  4. Model Order Reduction Original system (size n) d~ x dt = f ( ~ x ) + B~ u ( t ) ~ y = C~ x ~ u ( t ) x 2 R n ;~ z 2 R q ; x 7! ~ q ¿ n v : ~ z; ~ Reduced system (size q) d~ z dt = f r ( ~ z ) + B r ~ u ( t ) y = C r ~ ~ z u ( t ) ~ ASPDAC 2010 Slide 4

  5. Low-order Linear Subspace 2 3 2 3 2 3 2 3 ¡ 10 x 1 1 1 x 1 1 d 4 5 = 4 5 4 5 + 4 5 u ( t ) ¡ 1 x 2 1 0 x 2 0 dt ¡ 1 x 3 1 0 x 3 0 Low-order linear subspace Defined by x = V z ASPDAC 2010 Slide 5

  6. Low-order Nonlinear Manifold 2 3 2 3 2 3 2 3 2 3 ¡ 10 x 1 1 1 x 1 0 1 d 4 5 = 4 5 4 5 ¡ 4 5 + 4 5 u ( t ) ¡ 1 x 2 1 0 x 2 0 0 dt x 2 ¡ 1 x 3 1 0 x 3 0 1 Low-order nonlinear manifold ManiMOR: MOR Based on Nonlinear Projection on Nonlinear Manifolds ASPDAC 2010 Slide 6

  7. Key Steps in ManiMOR “Find” the nonlinear manifold Find” the nonlinear manifold ● “ ● Capture important dynamics “Parameterize” the manifold Parameterize” the manifold ● “ ● Build up the coordinate system ASPDAC 2010 Slide 7

  8. Manifold and Its Parameterization 8 < x = cos( t ) y = sin( t ) : z = t ASPDAC 2010 Slide 8

  9. Manifold and Its Parameterization M Parameterization of the manifold Tangent space T x M ½ R n R q ~ U Ã x v z U System of coordinates Manifold defined by No explicit mapping may be derived. pairs of f x; T x M g Instead, use piecewise linear approximation. ASPDAC 2010 Slide 9

  10. Manifold and Its Parameterization 1. Identify the manifold that capture important dynamics 2. Compute and store pairs of f x; T x M g = f z; T z M g ASPDAC 2010 Slide 10

  11. DC Manifold DC operating points constitute a DC manifold. d~ x dt = f ( ~ x ) + B~ u ( t ) = 0 How to compute and parameterize the DC manifold? ASPDAC 2010 Slide 11

  12. DC Manifold f ( ~ x ) + B~ u ( t ) = 0 A straight-forward solution: Computation: Perform DC sweep analysis u Parameterization: Define coordinates using values of z Problems: Hard to choose step size in DC sweep analysis Not generalizable to higher dimensions ASPDAC 2010 Slide 12

  13. Introduction to Integral Curve Given a vector field , v ( x ) dx its integral curve is the curve such that ° ´ x ( t ) dt = v ( x ) ASPDAC 2010 Slide 13

  14. DC Manifold as an Integral Curve Need to derive the relationship between and dx du @f dx f ( ~ x ) + B~ u ( t ) = 0 du + B = 0 @x dx The first du = ¡ [ G ( x )] ¡ 1 B Krylov basis. Initial condition: x ( u = 0) = x DC j u =0 Solutions are DC operating points. Any numerical integration / transient analysis code can be applied. ASPDAC 2010 Slide 14

  15. Parameterization using Euclidean Distance Parameterization using values of u ( x 3 ; y 3 ) ( x 2 ; y 2 ) u 0 + 2 h ( x 1 ; y 1 ) u 0 + h u 0 Parameterization using Euclidean Distance ( x 3 ; y 3 ) ( x 2 ; y 2 ) u 0 + 2 h u 0 + h ( x 1 ; y 1 ) u 0 Sample points equally spaced on the DC manifold ASPDAC 2010 Slide 15

  16. Parameterization using Euclidean Distance ASPDAC 2010 Slide 16

  17. Normalized Integral Curve Equation Local Euclidean distance is dx du = ¡ [ G ( x )] ¡ 1 B jj dx jj 2 = j du j ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ dx ¯ ¯ ¯ ¯ = jj [ G ( x )] ¡ 1 B jj 2 = 1 Generally not satisfied ¯ ¯ ¯ ¯ du 2 Normalize RHS Normalized Integral [ G ( x )] ¡ 1 B dx du = Curve Equation jj [ G ( x )] ¡ 1 B jj 2 Does it define the same integral curve? ASPDAC 2010 Slide 17

  18. Validation ASPDAC 2010 Slide 18

  19. Normalized Integral Curve Equation Theorem: Suppose ; and satisfy t = ¾ ( ¿ ) x ( t ) x ( ¿ ) ^ d d x ( ¿ ) = ¾ 0 ( ¿ ) g (^ and , respectively. dtx ( t ) = g ( x ( t )) d¿ ^ x ( ¿ )) Then and span the same state space. x ( t ) x ( ¿ ) ^ Sketch of proof: dt = ¾ 0 ( ¿ ) d¿ Since , we have . t = ¾ ( ¿ ) x ( ¿ ) ´ x ( t ) = ^ Define , then ^ x ( ¾ ( t )) d x ( ¿ ) = d ^ x ( ¿ ) dt d¿ = ¾ 0 ( ¿ ) g ( x ( t )) = ¾ 0 ( ¿ ) g (^ d¿ ^ x ( ¿ )) dt ASPDAC 2010 Slide 19

  20. Normalized Integral Curve Equation [ G ( x )] ¡ 1 B dx dx du = ¡ [ G ( x )] ¡ 1 B du = jj [ G ( x )] ¡ 1 B jj 2 Solution: Solution: ^ x ( u ) x (^ u ) Z ^ u 1 Define u = ¾ (^ u ) = d¹ x ( ¹ ))] ¡ 1 B jj 2 jj [ G (^ 0 From the theorem, and define the same integral curve. x ( u ) x (^ ^ u ) ASPDAC 2010 Slide 20

  21. Normalized Integral Curve Equation [ G ( x )] ¡ 1 B dx The first normalized du = Krylov basis. jj [ G ( x )] ¡ 1 B jj 2 Directly available from Krylov subspace methods. Generalizable to higher dimensions. ASPDAC 2010 Slide 21

  22. Ideal Nonlinear Manifold @x @x @x ¢ ¢ ¢ ; = v 1 ( x ) ; = v 2 ( x ) ; = v q ( x ) : @z 1 @z 2 @z q is the projection matrix V ( x ) = [ v 1 ( x ) ; ¢ ¢ ¢ ; v q ( x )] for the reduced linearized system (at ). x For example, Arnoldi algorithm generates a basis for K q ([ G ( x )] ¡ 1 ; B ) = f [ G ( x )] ¡ 1 B; [ G ( x )] ¡ 2 B; ¢ ¢ ¢ ; [ G ( x )] ¡ q B g However, this set of PDEs is over-determined. ASPDAC 2010 Slide 22

  23. Almost-Ideal Manifold Construction @x = v 1 ( x ) @z 1 x DC @x = v 2 ( x ) @x @z 2 = v 3 ( x ) @z 3 ASPDAC 2010 Slide 23

  24. Almost-Ideal Manifold Construction ASPDAC 2010 Slide 24

  25. Experimental Results ASPDAC 2010 Slide 25

  26. A Hand-Calculable Example d dtx 1 = ¡ x 1 + x 2 ¡ u ( t ) d dtx 2 = x 2 1 ¡ x 2 · ¡ x 1 + x 2 · ¡ 1 ¸ ¸ f ( x ) = ; B = x 2 1 ¡ x 2 0 · ¡ 1 ¸ · ¸ 1 1 1 1 [ G ( x )] ¡ 1 = G ( x ) = ; ¡ 1 2 x 1 2 x 1 ¡ 1 2 x 1 1 ASPDAC 2010 Slide 26

  27. DC and AC Manifold · ¡ 1 · ¸ ¸ 1 1 1 [ G ( x )] ¡ 1 = ; B = 2 x 1 ¡ 1 2 x 1 1 0 · ¸ 1 1 w 1 ( x ) = [ G ( x )] ¡ 1 B = 2 x 1 ¡ 1 2 x 1 · ¡ 1 ¡ 2 x 1 ¸ 1 w 2 ( x ) = [ G ( x )] ¡ 2 B = ¡ 4 x 1 (2 x 1 ¡ 1) 2 @x w 1 ( x ) DC manifold: = v 1 ( x ) = jj w 1 ( x ) jj 2 @z 1 w 2 ¡ < w 2 ; v 1 > v 1 @x AC manifold: = v 2 ( x ) = jj w 2 ¡ < w 2 ; v 1 > v 1 jj 2 @z 1 ASPDAC 2010 Slide 27

  28. DC and AC Manifold ASPDAC 2010 Slide 28

  29. Application to MOR 2 3 2 3 2 3 2 3 2 3 ¡ 10 x 1 1 1 x 1 0 1 d 5 ¡ 4 5 = 4 5 4 4 5 + 4 5 u ( t ) ¡ 1 x 2 1 0 x 2 0 0 dt x 2 ¡ 1 x 3 1 0 x 3 0 1 Trajectory of the full system stays close to the manifold ASPDAC 2010 Slide 29

  30. Simulation of the Reduced Order Model Response to a step input Response to a sinusoidal input ASPDAC 2010 Slide 30

  31. Conclusion Presented a manifold construction and ● Presented a manifold construction and parameterization procedure parameterization procedure ● Based on computing integral curves ● Preserves local distance ● Captures important system responses ● Such as DC and AC responses Application to manifold-based MOR ● Application to manifold-based MOR ● Validated against several examples ASPDAC 2010 Slide 31

Recommend


More recommend